Sensors (Basel)
February 2024
RF-based gesture recognition systems outperform computer vision-based systems in terms of user privacy. The integration of Wi-Fi sensing and deep learning has opened new application areas for intelligent multimedia technology. Although promising, existing systems have multiple limitations: (1) they only work well in a fixed domain; (2) when working in a new domain, they require the recollection of a large amount of data.
View Article and Find Full Text PDFFatigue can cause cracks to propagate from the micro- to the macroscale, which results in a decrease of Young's modulus of the bone. Non-destructive measurements of bone fatigue damage are of great importance for bone quality assessment and fracture prevention. Unfortunately, there is still a lack of effective nondestructive methods sensitive to the initial deterioration during damage accumulation, particularly in the field of orthopedics and biomechanics.
View Article and Find Full Text PDFMaterials (Basel)
January 2022
The fatigue damage behavior of bone has attracted significant attention in both the mechanical and orthopedic fields. However, due to the complex and hierarchical structure of bone, describing the damage process quantitively or qualitatively is still a significant challenge for researchers in this area. In this study, a nonlinear bi-modulus gradient model was proposed to quantify the neutral axis skewing under fatigue load in a four-point bending test.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
November 2021
Bones are biological composite materials with multiscale structures. Bone fatigue damage is commonly characterized by an increase in strain that is accompanied by microdamage at different scales. This study investigated the damage evolutions of bone specimens under four-point bending fatigue loading using neutral axis migration.
View Article and Find Full Text PDFAlterations to the bone structure from cycle loadings can undermine its damage resistance at multiple scales. The accumulation of fatigue damage in a bone is commonly characterized by the reduction in the elastic modulus. In this study, nano-indentation was used for investigating microscopic damage evolution of bovine tibia samples subjected to fatigue loading.
View Article and Find Full Text PDF