Publications by authors named "Xianhui Wan"

Many estuaries experience eutrophication, deoxygenation and warming, with potential impacts on greenhouse gas emissions. However, the response of NO production to these changes is poorly constrained. Here we applied nitrogen isotope tracer incubations to measure NO production under experimentally manipulated changes in oxygen and temperature in the Chesapeake Bay-the largest estuary in the United States.

View Article and Find Full Text PDF

The bioavailable nitrogen fixed by diazotrophs is critical for sustaining productivity in the oligotrophic ocean. Despite this, understanding how diazotroph-derived nitrogen integrates into the nitrogen cycle within the euphotic zone remains unknown. Here, we investigated nitrogen fixation rates in the particulate and dissolved fractions within the euphotic zone of the North Pacific Subtropical Gyre.

View Article and Find Full Text PDF

Ammonia-oxidizing microorganisms (AOM) contribute to one of the largest nitrogen fluxes in the global nitrogen budget. Four distinct lineages of AOM: ammonia-oxidizing archaea (AOA), beta- and gamma-proteobacterial ammonia-oxidizing bacteria (β-AOB and γ-AOB) and complete ammonia oxidizers (comammox), are thought to compete for ammonia as their primary nitrogen substrate. In addition, many AOM species can utilize urea as an alternative energy and nitrogen source through hydrolysis to ammonia.

View Article and Find Full Text PDF

The heavily human-perturbed coastal oceans are hotspots of nitrous oxide (NO) emission to the atmosphere. The processes underpinning the NO flux, however, remain poorly understood, leading to large uncertainties in assessing global NO budgets. Using a suite of nitrogen isotope labeling experiments, we show that multiple processes contribute to NO production throughout the estuarine-coastal gradient, sustaining intensive NO flux to the atmosphere.

View Article and Find Full Text PDF

Nitrite, an intermediate product of the oxidation of ammonia to nitrate (nitrification), accumulates in upper oceans, forming the primary nitrite maximum (PNM). Nitrite concentrations in the PNM are relatively low in the western North Pacific subtropical gyre (wNPSG), where eddies are frequent and intense. To explain these low nitrite concentrations, we investigated nitrification in cyclonic eddies in the wNPSG.

View Article and Find Full Text PDF

The ocean is a net source of the greenhouse gas and ozone-depleting substance, nitrous oxide (NO), to the atmosphere. Most of that NO is produced as a trace side product during ammonia oxidation, primarily by ammonia-oxidizing archaea (AOA), which numerically dominate the ammonia-oxidizing community in most marine environments. The pathways to NO production and their kinetics, however, are not completely understood.

View Article and Find Full Text PDF

Ammonia oxidation to nitrite and its subsequent oxidation to nitrate provides energy to the two populations of nitrifying chemoautotrophs in the energy-starved dark ocean, driving a coupling between reduced inorganic nitrogen (N) pools and production of new organic carbon (C) in the dark ocean. However, the relationship between the flux of new C production and the fluxes of N of the two steps of oxidation remains unclear. Here, we show that, despite orders-of-magnitude difference in cell abundances between ammonia oxidizers and nitrite oxidizers, the two populations sustain similar bulk N-oxidation rates throughout the deep waters with similarly high affinities for ammonia and nitrite under increasing substrate limitation, thus maintaining overall homeostasis in the oceanic nitrification pathway.

View Article and Find Full Text PDF

Methane, a major greenhouse gas, plays an important role in global carbon cycling and climate change. Methanogenesis is identified as an important process for methane formation in estuarine sediments. However, the metabolism of methane in the water columns of estuaries is not well understood.

View Article and Find Full Text PDF

The Pearl River Estuary (PRE) has long received tremendous amounts of anthropogenic nitrogen, and is facing severe environmental problems. Denitrification and anaerobic ammonium oxidation (anammox) are known to be two major nitrogen removal pathways in estuarine sediments. Through the use of slurry and intact sediment core incubations, we examined the nitrogen removal pathways and quantified the in situ denitrification and anammox with associated gaseous nitrogen production rates.

View Article and Find Full Text PDF

Phytoplankton assimilation and microbial oxidation of ammonium are two critical conversion pathways in the marine nitrogen cycle. The underlying regulatory mechanisms of these two competing processes remain unclear. Here we show that ambient nitrate acts as a key variable to bifurcate ammonium flow through assimilation or oxidation, and the depth of the nitracline represents a robust spatial boundary between ammonium assimilators and oxidizers in the stratified ocean.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the protective effects of total alkaloids (TA) from Coptis chinensis against alcohol-induced gastric lesions in rats, focusing on various gastric damage indicators.
  • TA demonstrated a dose-dependent reduction in gastric damage caused by ethanol, proving more effective than cimitidine and berberine at specified doses, while also affecting gastric acid secretion.
  • The findings suggest that TA helps protect the gastric mucosa by inhibiting acid secretion and mitigating oxidative stress markers, emphasizing its potential as a therapeutic agent for gastric damage.
View Article and Find Full Text PDF