Developing new materials that could identify fingerprint using the naked eye and observe the level 3 microscopic details is challenging. Here, we designed a novel hydrochromic and piezochromic dual-responsive optical film, which achieved the visual transparency transition. The performances of hydrochromic and piezochromic responses from high transparency to opaque whiteness were attributed to the introduction of poloxamer.
View Article and Find Full Text PDFIt is challenging to develop materials with room-temperature self-healing ability and mechanochromic response from mechanical stimuli to optical signals by a facile and simple preparation process. Herein, novel mechanochromic self-healing materials were designed by a simple synthesis procedure, balancing the mechanical properties, self-healing, stretchability, and mechanochromic response. Moreover, we designed and prepared the mechanochromic self-healing materials with different soft and hard segments by introducing multiple hydrogen bonds into the network, improving the mechanical properties and self-healing efficiency.
View Article and Find Full Text PDFWhile tremendous efforts have been dedicated to developing cellulose-based ultraviolet (UV)-blocking films, challenges still remain in simultaneously achieving high transparency, low haze and excellent UV shielding properties via simple and green strategy. Here, we present a facile and eco-friendly route to fabricate flexible, biodegradable and clear UV-shielding nano-MIL-88A(Fe)@carboxymethylated cellulose films (M(Fe)CCFs) via in situ synthesis of nano-MIL-88A(Fe) in carboxymethylated cellulose hydrogel followed by natural drying. The carboxymethylated cellulose film has high transmittance (93.
View Article and Find Full Text PDFIn recent years, along with the extensive application of ciprofloxacin (CIP), it has gradually become one of key environmental issues to be solved urgently. A novel fluorescent responsive nanocellulose composite film was successfully prepared by combining TEMPO-oxidized cellulose nanofibers (TOCNF) and terbium coordination polymer (Tb-AMP), in aqueous medium at room temperature via in-situ synthesis to detect CIP. CIP could supply energy for terbium ion through antenna effect to achieve the green fluorescence of Tb-AMP@TOCNF under 365 nm UV lamp.
View Article and Find Full Text PDFNew kinds of inorganic-organic hybrid porous materials, metal-organic frameworks (MOFs), have shown great application potential in various fields, but their powdery nature limits their application to a certain extent. As a green and renewable biomass material in nature, cellulose fiber (CelF) has the advantages of biodegradability, recyclability and easy processing, and can be used as an excellent flexible substrate for MOFs. However, the efficient deposition of MOFs on CelF is still a great challenge for the development of this new material.
View Article and Find Full Text PDFThe development of photothermal materials with a high light-to-heat conversion capability is essential for the utilization of clean solar energy. In this work, we demonstrate the use of a novel and sustainable concept involving cellulose liquefaction, rapid gelation, in situ synthesis and hot-press drying to convert cellulose and metal-organic framework (Prussian blue) into a stable photothermal bioplastic that can harvest sunlight and convert it into mechanical motion. As expected, the obtained Prussian blue@cellulose bioplastic (PCBP) can effectively absorb sunlight and the surface can be heated up to 70.
View Article and Find Full Text PDFDue to excellent flexibility and hydrophilicity, cellulose fibers (CFs) have become one of the most potential substrate materials in flexible and wearable electronics. In previous work, we prepared cobalt oxyhydroxide with crystal defects modified polypyrrole (PPy)@CFs composites with good electrochemical performance. In this work, we redesigned the crystalline and nanoscale cobalt oxyhydroxide with zeolitic imidazolate frameworks-67 (ZIF-67) as precursor.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are emerging highly crystallized three-dimensional network complex formed by self-assembling metal ions and organic ligands. However, all MOFs are nanoscale and micro scale powder materials, which greatly impedes their further applications. In this study, a transparent Eu-MOF@TEMPO-oxidized cellulose nanofibrils (Eu-MOF@TOCNF) photoluminescence material for specifically detecting copper ions was fabricated via in-situ synthesis in hydroalcoholic medium.
View Article and Find Full Text PDFNovel cellulose fibers-based composite consisted of zirconium oxyhydroxide and phytic acid doped polyaniline was prepared via a two-step method of simple chemical precipitation and followed by in situ polymerization process. Cellulose fibers were firstly modified with zirconium oxyhydroxide to enhance the binding of phytic acid doped polyaniline to the surface. A compact coating of phytic doped polyaniline was developed on zirconium oxyhydroxide modified cellulose fibers through the chelating of zirconium ions to phytic acid.
View Article and Find Full Text PDFWith the development of flexible electronic devices, flexible energy storage systems have been research hotpot. Conductive polymers is potential pseudocapacitor materials in energy storage field. Meanwhile, cellulose fiber with natural, degradable, renewable and flexible properties is one of tremendous promising alternatives to the flexible substrates.
View Article and Find Full Text PDFWe report a facile and effective method to fabricate clickable alkyne-functionalized cellulose fibers (ACFs) through in situ chemical oxidation copolymerization of 3-ethynylaniline and aniline under acidic aqueous solution. The effects of process variables on copolymer deposition onto CFs were investigated and suitable preparation conditions were identified. It was found that aniline significantly facilitated the polymerization of 3-ethynylaniline and shortened the preparation time of ACFs from 48 to 6 h.
View Article and Find Full Text PDFA mild and effective strategy to prepare alkynyl-functionalized cellulose fibers (A-CFs) and azido-functionalized cellulose fibers (N-CFs) was presented. Epoxy-cellulose fibers (Epoxy-CFs), graft copolymerization products of cellulose fibers (CFs) and glycidyl methacrylate (GMA), were prepared using cerium ammonium nitrate (CAN) as initiator. Epoxy groups content of Epoxy-CFs were as high as 2.
View Article and Find Full Text PDFPolyaniline (PANI)-deposited electrically conductive and flame retardant paper composite was prepared using phytic acid (PA) as dopant or co-dopant. PA as doping acid greatly improved the flame retardancy of PANI-deposited paper composite whilst the conductivity was lower compared with using 5-sulfosalicylic acid (SSA) as doping acid. Lower temperature was favorable to obtain PANI-deposited paper composite with both higher conductivity and better flame retardancy.
View Article and Find Full Text PDFObjective: DNA phosphorothioate modification means substituting a non-bridging oxygen with a sulfur in DNA. The modification endows DNA with such chemical property that protects the hosting bacteria against peroxide. The modification is controlled by a dnd gene cluster.
View Article and Find Full Text PDFObjective: DNA phosphorothioate modification (DNA sulfur modification, a non-bridging oxygen swapped with a sulfur) exists in diverse bacteria. Salmonella enterica serovar Cerro 87 is one of the bacteria that harbor the DNA sulfur modification. The modification is carried out by the products of a four-membered gene cluster, dptBCDE.
View Article and Find Full Text PDFIn this study, different from previous reports, an alternative process for detoxification of Cr(VI)-contaminated water with polypyrrole-engineered pulp fibers prepared using low cost hydrogen peroxide as oxidant was proposed. The process conditions in preparation of the engineered fibers as well as the water treatment conditions were optimized, and the behavior of Cr desorption from the engineered fibers was evaluated. The results showed that the proposed process was highly efficient in Cr(VI)-detoxification via the integration of adsorption with reduction.
View Article and Find Full Text PDFMany bacterial species modify their DNA with the addition of sulfur to phosphate groups, a modification known as DNA phosphorothioation. DndA is known to act as a cysteine desulfurase, catalyzing a key biochemical step in phosphorothioation. However, bioinformatic analysis revealed that 19 out of the 31 known dnd gene clusters, contain only four genes (dndB-E), lacking a key cysteine desulfurase corresponding gene.
View Article and Find Full Text PDF