In recent decades, 3D bioprinting has garnered significant research attention due to its ability to manipulate biomaterials and cells to create complex structures precisely. However, due to technological and cost constraints, the clinical translation of 3D bioprinted products (BPPs) from bench to bedside has been hindered by challenges in terms of personalization of design and scaling up of production. Recently, the emerging applications of artificial intelligence (AI) technologies have significantly improved the performance of 3D bioprinting.
View Article and Find Full Text PDFSpace three dimension (3D) bioprinting provides a precise and bionic tumor model for evaluating the compound effect of the space environment on tumors, thereby providing insight into the progress of the disease and potential treatments. However, space 3D bioprinting faces several challenges, including prelaunch uncertainty, possible liquid leakage, long-term culture in space, automatic equipment control, data acquisition, and transmission. Here, a novel satellite-based 3D bioprinting device with high structural strength, small volume, and low weight (<6 kg) is developed.
View Article and Find Full Text PDFCrosstalk between nerves and bone is essential for bone repair, for which Schwann cells (SCs) are crucial in the regulation of the microenvironment. Considering that exosomes are critical paracrine mediators for intercellular communication that exert important effects in tissue repair, the aim of this study is to confirm the function and molecular mechanisms of Schwann cell-derived exosomes (SC-exos) on bone regeneration and to propose engineered constructs that simulate SC-mediated nerve-bone crosstalk. SCs promoted the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs) through exosomes.
View Article and Find Full Text PDFTendinopathy is a common disease in orthopaedics, seriously affecting tendon functions. However, the effects of non-surgical treatment on tendinopathy are not satisfactory and surgical treatments possibly impair the function of tendons. Biomaterial fullerenol has been proved to show good anti-inflammatory effects on various inflammatory diseases.
View Article and Find Full Text PDFBackground: Although biomedical implants have been widely used in orthopedic treatments, two major clinical challenges remain to be solved, one is the bacterial infection resulting in biofilm formation, and the other is aseptic loosening during implantation due to over-activated osteoclastogenesis. These factors can cause many clinical issues and even lead to implant failure. Thus, it is necessary to endow implants with antibiofilm and aseptic loosening-prevention properties, to facilitate the integration between implants and bone tissues for successful implantation.
View Article and Find Full Text PDFBone defect is a serious orthopedic disease which has been studied for a long time. Alternative degradable biomaterials are required for bone repairing and regeneration to address the limitation of autogenous bone. β-tricalcium phosphate (β-TCP) is an alternative material with good cytocompatibility and has been used in bone defect treatment.
View Article and Find Full Text PDFCurrent treatments of osteoarthritis, such as oral medication and intra-articular injections, only provided temporary relief from pain and achieved limited advance in inhibiting progression. The development of new treatments is hindered by the complicated and unclear pathological mechanisms. Oxidative stress and immune inflammation are believed to be the important factors in the induction and progression of osteoarthritis.
View Article and Find Full Text PDFThe aberrant expression or genomic mutations of microRNA are associated with several human diseases. This study analyzes the relationship between genetic variations of miRNA and schizophrenia or bipolar disorder. We performed case-control studies for ten SNPs in a total sample of 1584 subjects.
View Article and Find Full Text PDFBackground: Lipped or elevated acetabular liners are to improve posterior stability and are widely used in hip arthroplasty. However, concerns of increasing impingement exist when using such liners and optimal orientation of the elevated rim remains unknown. We aimed to identify the impact of lipped liner on the range of motion (ROM) before impingement and propose its optimal orientation.
View Article and Find Full Text PDFTendinopathy is a common disease influencing life quality and tendon function of patients, especially in the elderly and athletes. Inflammation is an important pathologic process of tendinopathy. Hypoxia inducible factor-1 alpha (HIF-1α) participates actively in inflammatory process.
View Article and Find Full Text PDFBackground: Lower preoperative Hounsfield Unit (HU) values of vertebral body are associated with pedicle screw (PS) loosening after implantation with traditional trans-pedicular trajectory. However, the relationship between trajectory HU value and PS fixation quality remains unknown. This study aimed to investigate if 3-dimensionally (3D)-printed guider directed accurate implantation of pedicle screw could increase the anti-pulling properties of screws.
View Article and Find Full Text PDFMutation patterns of DNA adducts, such as mutational spectra and signatures, are useful tools for diagnostic and prognostic purposes. Mutational spectra of carcinogens derive from three sources: adduct formation, replication bypass, and repair. Here, we consider the repair aspect of 1,-ethenoadenine (εA) by the 2-oxoglutarate/Fe(II)-dependent AlkB family enzymes.
View Article and Find Full Text PDFIntroduction: Mechanical loading enhances the progression of osteoarthritis. However, its molecular mechanisms have not been established.
Objective: The aim of this review was to summarize the probable mechanisms of mechanical load-induced osteoarthritis.
Fluorogenic labeling enables imaging cellular molecules of interest with minimal background. This process is accompanied with the notable increase of the quantum yield of fluorophore, thus minimizing the background signals from unactivated profluorophores. Herein, the development of a highly efficient and bioorthogonal nitroso-based Diels-Alder fluorogenic reaction is presented and its usefulness is validated as effective and controllable in fluorescent probes and live-cell labeling strategies for dynamic cellular imaging.
View Article and Find Full Text PDFAs described elsewhere in this Special Issue on biomarkers, much progress has been made in the detection of modified DNA within organisms at endogenous and exogenous levels of exposure to chemical species, including putative carcinogens and chemotherapeutic agents. Advances in the detection of damaged or unnatural bases have been able to provide correlations to support or refute hypotheses between the level of exposure to oxidative, alkylative, and other stresses, and the resulting DNA damage (lesion formation). However, such stresses can form a plethora of modified nucleobases, and it is therefore difficult to determine the individual contribution of a particular modification to alter a cell's genetic fate, as measured in the form of toxicity by stalled replication past the damage, by subsequent mutation, and by lesion repair.
View Article and Find Full Text PDFA new class of N-phenyl-divinylsulfonamides which can be easily prepared have been successfully developed and utilized as efficient linkers in the field of disulfide bond modification. Functional divinylsulfonamides provide opportunities for the specific introduction of various functionalities, including affinity probes, fluorescent tags, and drugs, into peptides.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2017
Stimuli-responsive molecular containers are of great importance for controlled drug delivery and other biomedical applications. A new type of acid labile acyclic cucurbit[n]uril (CB[n]) molecular containers is presented that can degrade and release the encapsulated cargo at accelerated rates under mildly acidic conditions (pH 5.5-6.
View Article and Find Full Text PDFThe free fatty acid receptor 1 (FFA1) is a novel antidiabetic target for the treatment of type 2 diabetes based on particular mechanism in amplifying glucose-stimulated insulin secretion. We have previously identified a series of phenoxyacetic acid derivatives. Herein, we describe the further chemical modification of this series directed by ligand efficiency and ligand lipophilicity efficiency.
View Article and Find Full Text PDF