Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with aging, environmental, and genetic factors. Amyloid protein precursor () is a known pathogenic gene for familial Alzheimer's disease (FAD), and now more than 70 mutations have been reported, but the genotype-phenotype correlation remains unclear. In this study, we collected clinical data from patients carrying APP mutations defined as pathogenic/likely pathogenic according to the American college of medical genetics and genomics (ACMG) guidelines.
View Article and Find Full Text PDFBackground: Genetics plays an important role in progressive supranuclear palsy (PSP) and remains poorly understood. A detailed literature search identified 19 PSP-associated genes: MAPT, LRRK2, LRP10, DCTN1, GRN, NPC1, PARK, TARDBP, TBK1, BSN, GBA, STX6, EIF2AK3, MOBP, DUSP10, SLCO1A2, RUNX2, CXCR4, and APOE. To date, genetic studies on PSP have focused on Caucasian population.
View Article and Find Full Text PDFWet adhesion technology has potential applications in various fields, especially in the biomedical field, yet it has not been completely mastered by humans. Many aquatic organisms (e.g.
View Article and Find Full Text PDFDespite the similar clinical and pathological features between Niemann-Pick type C (NPC) disease and Alzheimer's disease (AD), few studies have investigated the role of NPC genes in AD. To elucidate the role of NPC genes in AD, we sequenced NPC1 and NPC2 in 1192 AD patients and 2412 controls. Variants were divided into common variants and rare variants according to minor allele frequency (MAF).
View Article and Find Full Text PDFPeptides capable of self-assembling into different supramolecular structures have potential applications in a variety of areas. The biomimetic molecular design offers an important avenue to discover novel self-assembling peptides. Despite this, a lot of biomimetic self-assembling peptides have been reported so far; to continually expand the scope of peptide self-assembly, it is necessary to find out more novel self-assembling peptides.
View Article and Find Full Text PDF