Publications by authors named "Xiangyu Tan"

Ambipolar transport is crucial for constructing high performance organic light-emitting transistors (OLETs), but the ambipolar feature is usually not exhibited due to ineffective electron injection especially in symmetric device geometry. Herein, we show that electron injection could be greatly enhanced through the judicious design of an organic interface layer of 3,7-di(2-naphthyl)dibenzothiophene ,-dioxide (DNaDBSO) which shows an interfacial dipole effect upon contact with a metal electrode, especially an Au electrode. When incorporating a DNaDBSO film beneath Au electrodes, the electron injection and mobility were significantly enhanced in 2,6-diphenylanthracene-based OLETs, and thus ambipolar transport (maxh: 2.

View Article and Find Full Text PDF

Developing high-efficiency interlayer catalysts is a promising tactic for improving the cycling performance of rechargeable lithium-sulfur (Li-S) batteries. Herein, using the Prussian blue analogue as the precursor, cobalt-zinc carbide nanocrystal-embedded N-doped porous carbon (CoZnC@NC) is synthesized simple post-carbonization. The obtained CoZnC@NC nanospheres exhibit a robust core-shell structure showing good conductivity, high porosity and available metal active sites, favoring the interfacial charge transfer and the electron transport upon electrochemical reactions.

View Article and Find Full Text PDF

As the field of 2D materials rapidly evolves, substances such as graphene, metal dichalcogenides, MXenes, and MBenes have garnered extensive attention from scholars in the gas sensing domain due to their unique and superior properties. Based on first-principles calculations, this work explored the adsorption characteristics of both intrinsic and silver (Ag) doped tin disulfide (SnS) toward the decomposition components of the insulating medium CFN (namely, CF, CF, and COF), encompassing the adsorption energy, charge transfer, density of state (DOS), band structure, and adsorption stability. The results indicated that Ag-doped SnS exhibited an effective and stable adsorption for CF and COF, whereas its adsorption for CF was comparatively weaker.

View Article and Find Full Text PDF

The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent.

View Article and Find Full Text PDF

Silicon-carbon composites have been recognized as some of the most promising anode candidates for advancing new-generation lithium-ion batteries (LIBs). The development of high-efficiency silicon/graphene anodes through a simple and cost-effective preparation route is significant. Herein, by using micron silicon as raw material, we designed a mesoporous composite of silicon/alumina/reduced graphene oxide (Si/AlO/RGO) a two-step ball milling combined annealing process.

View Article and Find Full Text PDF

Unsymmetric organic semiconductors have many advantages such as good solubility, rich intermolecular interactions for potential various optoelectronic applications. However, their synthesis is more challenging due to intricate structures thus normally suffering tedious synthesis. Herein, we report a trisulfur radical anion (S⋅) triggered domino thienannulation strategy for the synthesis of dibenzo[d,d']thieno[2,3-b;4,5-b']dithiophenes (DBTDTs) using readily available 1-halo-2-ethynylbenzenes as starting materials.

View Article and Find Full Text PDF

Non-contact voltage sensors based on the principle of electric field coupling have the advantages of simple loading and unloading, high construction safety, and the fact that they are not affected by line insulation. They can accurately measure line voltage without the need to connect to the measured object. Starting from the principle of non-contact voltage measurement, this article abstracts a non-contact voltage measurement model into the principle of capacitive voltage sharing and deduces its transfer relationship.

View Article and Find Full Text PDF

Gastric cancer stem cells (GCSCs) contribute to the refractory features of gastric cancer (GC) and are responsible for metastasis, relapse, and drug resistance. The key factors drive GCSC function and affect the clinical outcome of GC patients remain poorly understood. PRSS23 is a novel serine protease that is significantly up-regulated in several types of cancers and cancer stem cells, and related to tumor progression and drug resistance.

View Article and Find Full Text PDF

Gastric cancer (GC) is characterized by its vigorous chemoresistance to current therapies, which is attributed to the highly heterogeneous and immature phenotype of cancer stem cells (CSCs) during tumor initiation and progression. The secretory WNT2 ligand regulates multiple cancer pathways and has been demonstrated to be a potential therapeutic target for gastrointestinal tumors; however, its role involved in gastric CSCs (GCSCs) remains unclear. Here, we found that overexpression of WNT2 enhanced stemness properties to promote chemoresistance and tumorigenicity in GCSCs.

View Article and Find Full Text PDF

Gastric cancer (GC) is notoriously resistant to current therapies due to tumor heterogeneity. Cancer stem cells (CSCs) possess infinite self-renewal potential and contribute to the inherent heterogeneity of GC. Despite its crucial role in chemoresistance, the mechanism of stemness maintenance of gastric cancer stem cells (GCSCs) remains largely unknown.

View Article and Find Full Text PDF

Herein, we develop a new approach to directly access architecturally complex polycyclic indolines from readily available indoles and bicyclo[1.1.0]butanes (BCBs) through formal cycloaddition promoted by commercially available Lewis acids.

View Article and Find Full Text PDF

Cisplatin resistance remains a major obstacle limiting the effectiveness of chemotherapy in cervical cancer. However, the underlying mechanism of cisplatin resistance is still unclear. In this study, we demonstrate that vacuolar protein sorting 13 homolog C (VPS13C) deficiency promotes cisplatin resistance in cervical cancer.

View Article and Find Full Text PDF

Background: Cisplatin is commonly used to treat cervical cancer while drug resistance limits its effectiveness. There is an urgent need to identify strategies that increase cisplatin sensitivity and improve the outcomes of chemotherapy.

Results: We performed whole exome sequencing (WES) of 156 cervical cancer tissues to assess genomic features related to platinum-based chemoresistance.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the predictive performance of end-tidal carbon monoxide corrected to ambient carbon monoxide (ETCOc) values phototherapy in neonates with significant hyperbilirubinemia.

Methods: A prospective study was conducted on neonates with significant hyperbilirubinemia who received phototherapy between 3 and 7 days of life. The breath ETCOc and serum total bilirubin of the recruited infants were measured on admission.

View Article and Find Full Text PDF

The CFN/CO/O gas mixture received a great deal of attention for its potential use in eco-friendly gas-insulated equipment (GIE). The evaluation of the compatibility between CFN/CO/O and sealing rubber is necessary and significant considering the high working pressure (0.14-0.

View Article and Find Full Text PDF

The liquid-solid contact electrification mechanism has been explored in the aqueous solution system, but there are few systematic studies on oil-solid triboelectrification. Herein, an oil droplet triboelectric nanogenerator (Oil-droplet TENG) is designed as the probe to investigate the charge transfer properties at oil-solid interface. The charge transfer kinetics process is disclosed by the electrical signals produced, showing that the electron species initially predominated the oil-solid triboelectrification.

View Article and Find Full Text PDF

With the accelerated construction of the smart grid, new energy sources such as photovoltaic and wind power are connected to the grid. In addition to power frequency, the current signal of power grid also includes several DC signals, as well as medium-high and high-frequency transient signals. Traditional current sensors for power grids are bulky, have a narrow measurement range, and cannot measure both AC and DC at the same time.

View Article and Find Full Text PDF

Background: Multiple investigations have shown that diabetes mellitus is a predictor of post-stroke depression (PSD). However, whether elevated levels of fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are associated with an increased risk of PSD remains controversial.

Methods: We comprehensively searched databases for eligible studies.

View Article and Find Full Text PDF

Herein, we describe a Pd-catalyzed [2+3] cycloaddition/cross-coupling reaction of allenyl acetates for the selective and diastereoselective synthesis of dendralene-functionalized dihydrofurans. Remarkably, mechanistic studies show the formation of an epoxide from a carbonyl bond via cycloaddition, which is practically and mechanistically significant for the construction of other bioactive heterocyclic epoxides. This research also revealed the utility and potential of allenic esters as C2 synthons and 1,2-biselectrophiles in cycloaddition reactions.

View Article and Find Full Text PDF

5'-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway and has been reported to suppress tumorigenesis. The MTAP gene is located at 9p21, a chromosome region often deleted in breast cancer (BC). However, the clinical and biological significance of MTAP in BC is still unclear.

View Article and Find Full Text PDF

Automatic detection of cervical lesion cells or cell clumps using cervical cytology images is critical to computer-aided diagnosis (CAD) for accurate, objective, and efficient cervical cancer screening. Recently, many methods based on modern object detectors were proposed and showed great potential for automatic cervical lesion detection. Although effective, several issues still hinder further performance improvement of such known methods, such as large appearance variances between single-cell and multi-cell lesion regions, neglecting normal cells, and visual similarity among abnormal cells.

View Article and Find Full Text PDF

Gastrointestinal (GI) cancer, a common malignant tumor with a high incidence in China, is showing a trend of rising incidence and is afflicting increasingly younger patients. Meanwhile, there have been constant development and innovations in new therapeutic technologies, among which, immunotherapy is now leading in a new era in the treatment of GI cancer. However, the complexity and diversity of immunosuppressive tumor microenvironment (TME) bring many obstacles to the immunotherapy of solid tumors in the GI tract.

View Article and Find Full Text PDF

The tracking and positioning of transmission lines is a key element for UAVs (Unmanned Aerial Vehicles) to achieve autonomous inspection of transmission lines. Current methods are vulnerable to weather and environmental factors, have high costs, and have difficulties in data processing. Therefore, this paper proposes a transmission line tracking and localization method based on the electric field sensor array, which calculates the current UAV's heading angle deflection angle, the distance between the transmission line and the UAV, and the elevation angle, providing a new idea to solve the problem of UAV inspection of transmission lines.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) remains a devastating malignancy worldwide due to lack of effective therapy. The immune-rich contexture of HCC tumor microenvironment (TME) makes this tumor an appealing target for immune-based therapies; however, the immunosuppressive TME is still a major challenge for more efficient immunotherapy in HCC. Using bioinformatics analysis based on the TCGA database, here we found that MAPK10 is frequently down-regulated in HCC tumors and significantly correlates with poor survival of HCC patients.

View Article and Find Full Text PDF