Publications by authors named "Xiangyi Jiang"

As an important part of anti-AIDS therapy, HIV-1 non-nucleoside reverse transcriptase inhibitors are plagued by resistance and toxicity issues. Taking our reported XJ-18b1 as lead compound, we designed a series of novel diarypyrimidine derivatives by employing a scaffold hopping strategy to discover potent NNRTIs with improved anti-resistance properties and drug-like profiles. The most active compound 3k exhibited prominent inhibitory activity against wild-type HIV-1 (EC = 0.

View Article and Find Full Text PDF

Based on our proposed "pseudosubstrate envelope" concept, 25 benzothiazole-bearing HIV capsid protein (CA) modulators were designed and synthesized under the guidance of free energy perturbation technology. The most potent compound, , exhibited an EC of 2.69 nM against HIV-1, being 393 times more potent than the positive control PF74.

View Article and Find Full Text PDF

HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) play a crucial role in combination antiretroviral therapy (cART). To further enhance their antiviral activity and anti-resistance properties, we developed a series of novel NNRTIs, by specifically targeting tolerant region I of the NNRTI binding pocket. Among them, compound 9t-2 displayed excellent anti-HIV-1 potency against wild-type and prevalent mutant strains with EC values between 0.

View Article and Find Full Text PDF

In addressing the urgent need for novel HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) to combat drug resistance, we employed CuAAC click chemistry to construct a diverse 312-member diarylpyrimidine (DAPY) derivative library. This rapid synthesis approach facilitated the identification of A6N36, demonstrating exceptional HIV-1 RT inhibitory activity. Moreover, it was demonstrated with EC values of 1.

View Article and Find Full Text PDF

Pathogenic viruses are a profound threat to global public health, underscoring the urgent need for the development of efficacious antiviral therapeutics. The advent of RNA-targeting antiviral strategies has marked a significant paradigm shift in the management of viral infections, offering a potent means of control and potential cure. In this review, we delve into the cutting-edge progress in RNA-targeting antiviral agents, encompassing antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), small and bifunctional molecules.

View Article and Find Full Text PDF

The HIV capsid (CA) protein is a promising target for anti-AIDS treatment due to its critical involvement in viral replication. Herein, we utilized the well-documented CA inhibitor PF74 as our lead compound and designed a series of low-molecular-weight phenylalanine derivatives. Among them, compound 7t exhibited remarkable antiviral activity with a high selection index (EC = 0.

View Article and Find Full Text PDF

Optimization of compound 11L led to the identification of novel HIV capsid modulators, quinazolin-4-one-bearing phenylalanine derivatives, displaying potent antiviral activities against both HIV-1 and HIV-2. Notably, derivatives and showed significant improvements, with 2.5-fold over 11L and 7.

View Article and Find Full Text PDF

Introduction: Selenium possesses numerous advantageous properties in the field of medicine, and a variety of selenium-containing compounds have been documented to exhibit anti-HIV activity. This paper aims to categorize these compounds and conduct SAR analysis to offer guidance for drug design and optimization.

Areas Covered: The authors present a comprehensive review of the reported SAR analysis conducted on selenium-based compounds against HIV, accompanied by a concise discussion regarding the pivotal role of selenium in drug development.

View Article and Find Full Text PDF

SARS-CoV-2 3-chymotrypsin-like protease (3CL) is considered an attractive target for the development of anti-COVID-19 agents due to its vital function. The -substituted isatin derivative L-26 is a potential SARS-CoV-2 3CL inhibitor, but it has poor cell-based antiviral activity and high cytotoxicity. With L-26 as the lead compound, 58 isatin derivatives were prepared using click-chemistry-based miniaturized synthesis and their 3CL inhibitory activities were determined by a fluorescence resonance energy transfer-based enzymatic assay.

View Article and Find Full Text PDF

HIV-1 capsid (CA) is an attractive target for its indispensable roles in the viral life cycle. We report the design, synthesis, and mechanistic study of a novel series of 2-piperazineone peptidomimetics as HIV capsid modulators by mimicking the structure of host factors binding to CA. F-Id-3o was the most potent compound from the synthesized series, with an anti-HIV-1 EC value of 6.

View Article and Find Full Text PDF

Taking our previously reported HIV-1 NNRTIs BH-11c and XJ-10c as lead compounds, series of novel diarypyrimidine derivatives bearing six-membered non-aromatic heterocycles were designed to improve anti-resistance and drug-like profiles. According to the three rounds of in vitro antiviral activity screening, compound 12g was the most active inhibitor against wild-type and five prevalent NNRTI-resistant HIV-1 strains with EC values ranging from 0.024 to 0.

View Article and Find Full Text PDF

HIV-1 reverse transcriptase is one of the most attractive targets for the treatment of AIDS. However, the rapid emergence of drug-resistant strains and unsatisfactory drug-like properties seriously limit the clinical application of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Here we show that a series of piperazine sulfonyl-bearing diarylpyrimidine-based NNRTIs were designed to improve the potency against wild-type and NNRTI-resistant strains by enhancing backbone-binding interactions.

View Article and Find Full Text PDF

HIV-1 capsid (CA) performs multiple roles in the viral life cycle and is a promising target for antiviral development. In this work, we describe the design, synthesis, assessment of antiviral activity, and mechanistic investigation of 20 piperazinone phenylalanine derivatives with a terminal indole or benzene ring. Among them, exhibited moderate anti-HIV-1 activity with an EC value of 5.

View Article and Find Full Text PDF

Introduction: Although combination antiretroviral therapy (cART) has achieved significant success in treating HIV, the emergence of multidrug-resistant viruses and cumulative medication toxicity make it necessary to find new classes of antiretroviral agents with novel mechanisms of action. With high sequence conservation, the HIV-1 capsid (CA) protein has attracted attention as a prospective therapeutic target due to its crucial structural and regulatory functions in the HIV-1 replication cycle.

Area Covered: Herein, the authors provide a cutting-edge overview of current advances in the design and discovery of CA modulators, and their derivativeswhich targets a therapeutically attractive NTD-CTD interprotomer pocket within the hexameric configuration of HIV-1 CA.

View Article and Find Full Text PDF

Introduction: Boron has attracted extensive interest due to several FDA-approved boron-containing drugs and other pharmacological agents in clinical trials. As a semimetal, it has peculiar biochemical characteristics which could be utilized in designing novel drugs against drug-resistant viruses. Emerging and reemerging viral pandemics are major threats to human health.

View Article and Find Full Text PDF

The AIDS pandemic is still of importance. HIV-1 and HIV-2 are the causative agents of this pandemic, and in the absence of a viable vaccine, drugs are continually required to provide quality of life for infected patients. The HIV capsid (CA) protein performs critical functions in the life cycle of HIV-1 and HIV-2, is broadly conserved across major strains and subtypes, and is underexploited.

View Article and Find Full Text PDF

Capsid assembly modulators (CAMs) represent a novel class of antiviral agents targeting hepatitis B virus (HBV) capsid to disrupt the assembly process. NVR 3-778 is the first CAM to demonstrate antiviral activity in patients infected with HBV. However, the relatively low aqueous solubility and moderate activity in the human body halted further development of NVR 3-778.

View Article and Find Full Text PDF

As a key structural protein, HIV capsid (CA) protein plays multiple roles in the HIV life cycle, and is considered a promising target for anti-HIV treatment. Based on the structural information of CA modulator PF-74 bound to HIV-1 CA hexamer, 18 novel phenylalanine derivatives were synthesized via the Ugi four-component reaction. In vitro anti-HIV activity assays showed that most compounds exhibited low-micromolar-inhibitory potency against HIV.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) capsid protein (Cp) is necessary for viral replication and the maintenance of viral persistence, having become an attractive target of anti-HBV drugs. To improve the water solubility of HBV capsid protein allosteric modulator (CpAM) NVR 3-778, a series of novel carboxylic acid and phosphate prodrugs were designed and synthesized using a prodrug strategy. In vitro HBV replication assay showed that these prodrugs maintained favorable antiviral potency (EC50 = 0.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) capsid (CA) protein is a promising target for developing novel anti-HIV drugs. Starting from highly anticipated CA inhibitors PF-74, we used scaffold hopping strategy to design a series of novel 1,2,4-triazole phenylalanine derivatives by targeting an unexplored region composed of residues 106-109 in HIV-1 CA hexamer. Compound d19 displayed excellent antiretroviral potency against HIV-1 and HIV-2 strains with EC values of 0.

View Article and Find Full Text PDF

Currently, HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a major component of the highly active anti-retroviral therapy (HAART) regimen. However, the occurrence of drug-resistant strains and adverse reactions after long-term usage have inevitably compromised the clinical application of NNRTIs. Therefore, the development of novel inhibitors with distinct anti-resistance profiles and better pharmacological properties is still an enormous challenge.

View Article and Find Full Text PDF

Here, we report the design, synthesis, structure-activity relationship studies, antiviral activity, enzyme inhibition, and druggability evaluation of dihydrofuro[3,4-]pyrimidine derivatives as a potent class of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Compounds (EC = 5.79-28.

View Article and Find Full Text PDF

Further clinical development of PF74, a lead compound targeting HIV-1 capsid, is impeded by low antiviral activity and inferior metabolic stability. By modifying the benzene (region I) and indole of PF74, we identified two potent compounds (7m and 7u) with significantly improved metabolic stability. Compared to PF74, 7u displayed greater metabolic stability in human liver microsomes (HLMs) with half-life (t) 109-fold that of PF74.

View Article and Find Full Text PDF

HIV-1 capsid (CA) plays indispensable and multiple roles in the life cycle of HIV-1, become an attractive target in antiviral therapy. Herein, we report the design, synthesis, and mechanism study of a novel series of dimerized phenylalanine derivatives as HIV-1 capsid inhibitors using 2-piperazineone or 2,5-piperazinedione as a linker. The structure-activity relationship (SAR) indicated that dimerized phenylalanines were more potent than monomers of the same chemotype.

View Article and Find Full Text PDF

The HIV-1 Capsid (CA) is considered as a promising target for the development of potent antiviral drugs, due to its multiple roles during the viral life cycle. Herein, we report the design, synthesis, and antiviral activity evaluation of series of novel phenylalanine derivatives as HIV-1 CA protein inhibitors. Among them, 4-methoxy-N-methylaniline substituted phenylalanine (II-13c) and indolin-5-amine substituted phenylalanine (V-25i) displayed exceptional anti-HIV-1 activity with the EC value of 5.

View Article and Find Full Text PDF