In order to alleviate the dendrite problem of zinc-ion batteries, a gel electrolyte is prepared by Maillard reactions occurring between hydrolyzed wool keratin and carboxymethyl cellulose under heating conditions. The prepared gel electrolyte with the addition of hydrolyzed wool keratin possesses good mechanical properties, and its maximum breaking strength, Young's modulus, and elastic modulus are 58.7, 10.
View Article and Find Full Text PDFHydrogels have been widely used in various fields due to their diverse properties and flexible preparation methods. However, limited by the open network structure, hydrogels inevitably lose water in air or absorb water in aqueous solution, resulting in the loss of intrinsic functions, which severely hinders their practical applications. To address this issue, a general strategy was developed by subsequently modifying the surface of hydrogels with branched polyethyleneimine (PEI) and (3-(methacryloxy)propyl)trimethoxysilane (MPS) to covalently construct a dense cross-linked siloxane layer on the hydrogel surface.
View Article and Find Full Text PDF"Fast-charging" lithium-ion batteries have gained a multitude of attention in recent years since they could be applied to energy storage areas like electric vehicles, grids, and subsea operations. Unfortunately, the excellent energy density could fail to sustain optimally while lithium-ion batteries are exposed to fast-charging conditions. In actuality, the crystal structure of electrode materials represents the critical factor for influencing the electrode performance.
View Article and Find Full Text PDFAnisotropic conductive hydrogels mimicking the natural tissues with high mechanical properties and intelligent sensing have played an important role in the field of flexible electronic devices. Herein, tensile remodeling, drying, and subsequent ion cross-linking methods were used to construct anisotropic hydrogels, which were inspired by the orientation and functionality of tendons. Due to the anisotropic arrangement of the polymer network, the mechanical performance and electrical conductivity were greatly improved in specific directions.
View Article and Find Full Text PDFAntimony selenide (SbSe) is emerging as a promising photovoltaic material owing to its excellent photoelectric property. However, the low carrier transport efficiency, and detrimental surface oxidation of the SbSe thin film greatly influenced the further improvement of the device efficiency. In this study, the introduction of tellurium (Te) can induce the benign growth orientation and the desirable Sb/Se atomic ratio in the Te-SbSe thin film.
View Article and Find Full Text PDFWith the development of flexible and wearable electronic devices, it is a new challenge for polymer hydrogel electrolytes to combine high mechanical flexibility and electrochemical performance into one membrane. In general, the high content of water in hydrogel electrolyte membranes always leads to poor mechanical strength, and limits their applications in flexible energy storage devices. In this work, based on the "salting out" phenomenon in Hofmeister effect, a kind of gelatin-based hydrogel electrolyte membrane is fabricated with high mechanical strength and ionic conductivity by soaking pre-gelated gelatin hydrogel in 2 m ZnSO aqueous.
View Article and Find Full Text PDFIn recent years, the generation of a large amount of construction and demolition waste (CDW) has threatened the public environment and human health. The inefficient supply chain of CDW resource utilization hinders the green development of countries around the world, including China. This study aims to reveal the impact of information sharing regarding recyclers' market demand forecast on the performance of CDW resource utilization supply chains.
View Article and Find Full Text PDFA mild and efficient method for direct C-H monofluoroalkylation of heteroarenes with easily accessible and inexpensive α-fluorocarboxylic acids has been developed. This silver-catalyzed reaction affords mono- and bis-monofluoroalkylated heteroarenes in good yields under mild conditions, and the solvent effect on the monofluoroalkylation reaction is discussed in detail.
View Article and Find Full Text PDFAs a specific biomarker, neuron-specific enolase (NSE) is an essential clinical indicator for diagnosing small cell lung cancer. In this paper, a sandwich-type electrochemical immunosensor was designed for the quantitative detection of NSE. AuPt nanoblock spherical nanoarchitectonics (AuPt NSNs), a bimetallic nanoparticle with a rugged morphology, were utilized as the substrate, which could enhance the electronic conduction and increase the immobilization capacity of the primary antibody (Ab).
View Article and Find Full Text PDFContext: Release of two drugs safely and independently should be necessary in medical or reaction engineering fields to overcome many complex problems such as multi-drug resistance in treatment of disease.
Objectives: Core-shell structural microparticles that can load/release two drugs simultaneously are designed and prepared.
Materials: The microparticles are composed of mesoporous silica core and hyaluronate (HA)/poly (N-isopropylacrylamide) hybrid gel shell.