Publications by authors named "Xiangyao Gu"

Graphdiyne (GDY) is a promising anode for rechargeable batteries with high capacity, outstanding cyclic stability, and low diffusion energy. The unique structure of GDY endows distinctive mechanisms for metal-ion storage, and it is of great significance to further visualize the complex reaction kinetics of the redox process. Here, we systematically tracked the reaction kinetics and provided mechanistic insights into the lithium ions in the GDY to reveal the feature of the cation-π effect.

View Article and Find Full Text PDF

The coordination environment of Ru centers determines their catalytic performance, however, much less attention is focused on cluster-induced charge transfer in a Ru single-atom system. Herein, by density functional theory (DFT) calculations, a competitive coordination-pairing between Ru clusters (RuRu bond) and single-atoms (RuO bond) is revealed leading to the charge redistribution between Ru and O atoms in ZnFe O units which share more free electrons to participate in the hydrogen desorption process, optimizing the proton adsorption and hydrogen desorption. Thus, a clicking confinement strategy for building a competitive coordination-pairing between Ru clusters and single-atoms anchored on ZnFe O nanosheets over carbon via RuO ligand (Ru -ZnFe O -C) is proposed.

View Article and Find Full Text PDF

The density functional theory calculation results reveal that the adjacent defect concentration and electronic spin state can effectively activate the Co sites in the atomically thin nanosheets, facilitating the thermodynamic transformation of *O to *OOH, thus offering ultrahigh charge transfer properties and efficiently stabilizing the phase. This undoubtedly evidences that, for metal sulfides, the atom-scale cation/anion vacancy pair and surface electronic spin state can play a great role in enhancing the oxygen evolution reaction. Inspired by the theoretical prediction, interconnected selenium (Se) wired ultrathin Co S (Se -Co S ) nanosheets with Co/S (Se) dual-vacancies (Se -Co S -V -V ) pairs are constructed by a simple approach.

View Article and Find Full Text PDF