Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes tuberculosis (TB), an infectious disease that is responsible for major health and economic costs worldwide. Mtb encounters diverse environments during its life cycle and responds to these changes largely by reprogramming its transcriptional output. However, the mechanisms of Mtb transcription and how they are regulated remain poorly understood.
View Article and Find Full Text PDF(Mtb) is a bacterial pathogen that causes tuberculosis, an infectious disease that inflicts major health and economic costs around the world . Mtb encounters a diversity of environments during its lifecycle, and responds to these changing environments by reprogramming its transcriptional output . However, the transcriptomic features of Mtb remain poorly characterized.
View Article and Find Full Text PDFGenomic DNA is a crowded track where motor proteins frequently collide. It remains underexplored whether these collisions carry physiological function. In this work, we develop a single-molecule assay to visualize the trafficking of individual E.
View Article and Find Full Text PDFInnate immunity plays critical antiviral roles. The highly virulent avian influenza viruses (AIVs) H5N1, H7N9, and H5N6 can better escape host innate immune responses than the less virulent seasonal H1N1 virus. Here, we report a mechanism by which transcriptional readthrough (TRT)-mediated suppression of innate immunity occurs post AIV infection.
View Article and Find Full Text PDFThe ability to determine full-length nucleotide composition of individual RNA molecules is essential for understanding the architecture and function of a transcriptome. However, experimental approaches capable of capturing the sequences of both 5' and 3' termini of the same transcript remain scarce. In the present study, simultaneous 5' and 3' end sequencing (SEnd-seq)-a high-throughput and unbiased method that simultaneously maps transcription start and termination sites with single-nucleotide resolution-is presented.
View Article and Find Full Text PDFGiven the high mortality rate (>50%) and potential danger of intrapersonal transmission, highly pathogenic avian influenza (HPAI) H5N1 epidemics still pose a significant threat to humans. γδ T cells, which participate on the front line of the host immune defense, demonstrate both innate, and adaptive characteristics in their immune response and have potent antiviral activity against various viruses. However, the roles of γδ T cells in HPAI H5N1 viral infection remain unclear.
View Article and Find Full Text PDFAlthough zinc oxide nanoparticles (ZnONPs) are widely used, they have raised concerns of toxicity in humans. Previous studies have indicated that reactive oxygen species (ROS) and autophagy are involved in the cytotoxicity of ZnONPs, but the regulatory mechanisms between autophagy and ROS remain to be elucidated. Herein, we comprehensively investigated the regulatory mechanism of autophagy and the link between autophagy and ROS in ZnONPs-treated lung epithelial cells.
View Article and Find Full Text PDFB cell hybridomas are an important source of monoclonal antibodies. In this paper, we developed a high-throughput method to characterize mouse IgG antibodies using surface plasmon resonance technology. This assay rapidly determines their sub-isotypes, whether they bind native antigen and their approximate affinities for the antigen using only 50 μl of hybridoma cell culture supernatant.
View Article and Find Full Text PDFUnlabelled: As a recycling center, lysosomes are filled with numerous acid hydrolase enzymes that break down waste materials and invading pathogens. Recently, lysosomal cell death has been defined as "lysosomal membrane permeabilization and the consequent leakage of lysosome contents into cytosol." Here, we show that the neuraminidase (NA) of H5N1 influenza A virus markedly deglycosylates and degrades lysosome-associated membrane proteins (LAMPs; the most abundant membrane proteins of lysosome), which induces lysosomal rupture, and finally leads to cell death of alveolar epithelial carcinoma A549 cells and human tracheal epithelial cells.
View Article and Find Full Text PDFEbola virus (EBOV) causes a highly lethal hemorrhagic fever syndrome in humans and has been associated with mortality rates of up to 91% in Zaire, the most lethal strain. Though the viral envelope glycoprotein (GP) mediates widespread inflammation and cellular damage, these changes have mainly focused on alterations at the protein level, the role of microRNAs (miRNAs) in the molecular pathogenesis underlying this lethal disease is not fully understood. Here, we report that the mi-RNAs hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p were induced in human umbilical vein endothelial cells (HUVECs) following expression of EBOV GP.
View Article and Find Full Text PDFThe potential for avian influenza H5N1 outbreaks has increased in recent years. Thus, it is paramount to develop novel strategies to alleviate death rates. Here we show that avian influenza A H5N1-infected patients exhibit markedly increased serum levels of angiotensin II.
View Article and Find Full Text PDFThe threat of a new influenza pandemic has existed since 1997, when the highly pathogenic H5N1 strain of avian influenza A virus infected humans in Hong Kong and spread across Asia, where it continued to infect poultry and people. The human mortality rate of H5N1 infection is about 60%, whereas that of seasonal H1N1 infection is less than 0.1%.
View Article and Find Full Text PDFPhosphatidylinositol kinases (PI kinases) play an important role in the life cycle of several viruses after infection. Using gene knockdown technology, we demonstrate that phosphatidylinositol 4-kinase IIIβ (PI4KB) is required for cellular entry by pseudoviruses bearing the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike protein and that the cell entry mediated by SARS-CoV spike protein is strongly inhibited by knockdown of PI4KB. Consistent with this observation, pharmacological inhibitors of PI4KB blocked entry of SARS pseudovirions.
View Article and Find Full Text PDFThe 2009 flu pandemic involved the emergence of a new strain of a swine-origin H1N1 influenza virus (S-OIV H1N1) that infected almost every country in the world. Most infections resulted in respiratory illness and some severe cases resulted in acute lung injury. In this report, we are the first to describe a mouse model of S-OIV virus infection with acute lung injury and immune responses that reflect human clinical disease.
View Article and Find Full Text PDFIn 2009, a novel swine-origin H1N1 influenza virus emerged in Mexico and quickly spread to other countries, including China. This 2009 pandemic H1N1 can cause human respiratory disease, but its pathogenesis remains poorly understood. Here, we studied the infection and pathogenesis of a new 2009 pandemic strain, A/Wenshan/01/2009 H1N1, in China in human airway epithelial cell lines compared with contemporary seasonal H1N1 influenza virus.
View Article and Find Full Text PDF