Hepatocellular carcinoma is a refractory tumor with poor prognosis and high mortality. Many oncolytic viruses are currently being investigated for the treatment of hepatocellular carcinoma. Based on previous studies, we constructed a recombinant GM-CSF-carrying Sindbis virus, named SINV-GM-CSF, which contains a mutation (G to S) at amino acid 285 in the nsp1 protein of the viral vector.
View Article and Find Full Text PDFNerve growth factor (NGF) has been shown to support the survival and differentiation of neurons. In this study, we first developed a retrograde trans-multisynaptic tracer PRV580 expressing the mCherry fluorescent protein based on pseudorabies virus Bartha strain to map the neural circuit of sciatic nerve. Secondly, the newly developed PRV580 was used to map the neural circuit of the recovering sciatic nerve upon treatment with NGF.
View Article and Find Full Text PDFBackground: The characteristics of glioblastoma, such as drug resistance during treatment, short patient survival, and high recurrence rates, have made patients with glioblastoma more likely to benefit from oncolytic therapy.
Methods: In this study, we investigated the safety of the sindbis virus by injecting virus intravenously and intracranially in mice and evaluated the therapeutic effect of the virus carrying different combinations of IL-12, IL-7, and GM-CSF on glioma in a glioma-bearing mouse model.
Results: SINV was autologously eliminated from the serum and organs as well as from neural networks after entering mice.
Neuroscience, gene therapy, and vaccine have all benefited from the increased use of viral vectors. Sindbis virus (SINV) is a notable candidate among these vectors. However, viral vectors commonly suffer from a loss of expression of the transgene, especially RNA viral vectors.
View Article and Find Full Text PDFMapping neural circuits is critical for understanding the structure and function of the nervous system. Engineered viruses are a valuable tool for tracing neural circuits. However, current tracers do not fully meet the needs for this approach because of various drawbacks, such as toxicity and characteristics that are difficult to modify.
View Article and Find Full Text PDFRabies virus (RV) is the most widely used vector for mapping neural circuits. Previous studies have shown that the RV glycoprotein can be a target to improve the retrograde transsynaptic tracing efficiency. However, the current versions still label only a small portion of all presynaptic neurons.
View Article and Find Full Text PDFThe impressive functions of the brain rely on an extensive connectivity matrix between specific neurons, the architecture of which is frequently characterized by one brain nucleus/region connecting to multiple targets, either via collaterals of the same projection neuron or several, differentially specified neurons. Delineating the fine architecture of projection neuron subsets in a specific brain region could greatly facilitate its circuit, computational, and functional resolution. Here, we developed multiple fluorescent rabies viruses (RV) to delineate the fine organization of corticothalamic projection neuron subsets in the primary visual cortex (V1).
View Article and Find Full Text PDFMapping the neural circuits facilitates understanding the brain's working mechanism. Pseudorabies virus (PRV; Bartha stain) as a tracer can infect neurons and retrogradely transport in neural circuits. To illuminate the network, tracers expressing reporter genes at a high level are needed.
View Article and Find Full Text PDF