Halogenated volatile organic compounds (abbreviated as X-VOCs) are a class of hazardous gas pollutants that are difficult to detect due to their thermal stability, chemical inertness, and poisoning effect on gas sensors at high temperatures. In this work, room-temperature detection of X-VOCs is achieved using a surface acoustic wave (SAW) gas sensor coated with a 1-ethyl-3-methylimidazolium bis(trifluoromethylsufonyl)imide (EMIM-TFSI)-based ionic gel film. We experimentally verify that the high selectivity of the ionic gel-based SAW gas sensor for X-VOCs is due to the presence of halogen atoms in these gas molecules.
View Article and Find Full Text PDFNeuromorphic perception and computing show great promise in terms of energy efficiency and data bandwidth compared to von Neumann's computing architecture. In-sensor computing allows perception information processing at the edge, which is highly dependent on the functional fusion of receptors and neurons. Here, a leaky integrate-and-fire (LIF) artificial spiking sensory neuron (ASSN) based on a NbO memristor and an a-IGZO thin-film transistor (TFT) is successfully developed.
View Article and Find Full Text PDFEthanol is a harmful volatile organic compound (VOC) for human health. Currently, zinc oxide (ZnO) is one of the most popular metal oxide semiconductors for VOCs detection but suffering from a lack of selectivity, poor response, and slow response/recovery speeds. Herein, we successfully synthesized the ZnO/TiCTnanocomposites via a facile hydrothermal method, in which ZnO nanoparticles were uniformly grown on two-dimensional (2D) TiCTnanosheets.
View Article and Find Full Text PDFA delay line-type surface acoustic wave (SAW) gas sensor based on p-hexafluoroisopropanol phenyl (HFIPPH) functionalized multi-walled carbon nanotube (MWCNT) film is developed to detect organophosphorus dimethyl methylphosphonate (DMMP) vapor (a simulant of chemical nerve agent sarin). Inspired by the transfer process of Cu-based graphene, a uniform and size-controllable HFIPPH-MWCNT film is successfully prepared on the SAW device via a wet-etching transfer method. For the first time, we use the method of measuring the change of the sensor's insertion loss to achieve the detection of ultra-low concentration DMMP vapor.
View Article and Find Full Text PDFIn order to meet the requirements of ultra-fast real-time monitoring of sarin simulator with high sensitivity and selectivity, it is of great significance to develop high performance dimethyl methylphonate (DMMP) sensor. Herein, we proposed a DMMP sensor based on p-hexafluoroisopropanol phenyl (HFIPPH) modified self-assembled single-walled carbon nanotubes (SWCNTs) with field effect transistor (FET) structure. The self-assembly method provides a 4 nanometres thick and micron sized SWCNT channel, with high selectivity to DMMP.
View Article and Find Full Text PDFGas-sensing performance of graphene-based material has been investigated widely in recent years. Polyaniline (PANI) has been reported as an effective method to improve ammonia gas sensors' response. A gas sensor based on a composite of rGO film and protic acid doped polyaniline (PA-PANI) with GO doping is reported in this work.
View Article and Find Full Text PDFIn this paper, a novel ammonia detection hybrid film is proposed based on a graphene oxide (GO)/graphene stack, which shows excellent sensing characteristics at room temperature. It is attributed to the cooperation of GO layer serving as molecular capture layer while graphene serving as conductive layer. GO layer is obtained on chemical vapor deposited graphene film by a simple drop-casting method.
View Article and Find Full Text PDFMetal organic frameworks (MOFs) with two dimensional (2D) nanosheets have attracted special attention for supercapacitor application due to their exceptional large surface area and high surface-to-volume atom ratios. However, their electrochemical performance is greatly hindered by their poor electrical conductivity. Herein, we report a 2D nanosheet nickel cobalt based MOF (NiCo-MOF)/reduced graphene oxide heterostructure as an electrode material for supercapacitors.
View Article and Find Full Text PDFOxygen plasma treatment has been reported as an effective way of improving the response of graphene gas sensors. In this work, a gas sensor based on a composite graphene channel with a layer of pristine graphene (G) at the bottom and an oxygen plasma-treated graphene (OP-G) as a covering layer was reported. The OP-G on top provided oxygen functional groups and serves as the gas molecule grippers, while the as-grown graphene beneath serves as a fast carrier transport path.
View Article and Find Full Text PDF