Rechargeable aqueous zinc-ion batteries (RAZIBs) are attracting increasing attention due to their advantages in safety, cost, and energy density. However, the choice of electrode binders when using aqueous electrolytes faces many constraints, as nontoxic and low-cost hydrophilic binders, such as sodium alginate (SA), can lead to electrode damage due to excessive swelling in aqueous solution. Here, by employing double-network hydrogel electrolytes formed by poly(vinyl alcohol) and alginate, the content and activity of water molecules at the electrode-electrolyte interface are reduced, and the mechanical stability of the electrode is reinforced, thereby affording reliable protection to the cathode bonded with SA.
View Article and Find Full Text PDFRechargeable aqueous zinc-ion batteries (RAZIBs) offer low cost, high energy density, and safety but struggle with anode corrosion and dendrite formation. Gel polymer electrolytes (GPEs) with both high mechanical properties and excellent electrochemical properties are a powerful tool to aid the practical application of RAZIBs. In this work, guided by a machine learning (ML) model constructed based on experimental data, polyacrylamide (PAM) with a highly entangled structure was chosen to prepare GPEs for obtaining high-performance RAZIBs.
View Article and Find Full Text PDFThe charge/discharge performance of rechargeable aqueous zinc ion batteries (RAZIBs) at high currents is often unsatisfactory due to the cathode preparation process and the use of hydrophobic binders. By adding freeze-drying treatment to the preparation process of the cathodes, MnO cathodes with hierarchically porous structures are obtained, which provide additional channels for ion transfer, thus greatly enhancing the charge/discharge performance in aqueous Zn-MnO batteries.
View Article and Find Full Text PDF