The ability to electrically manipulate spin states in magnetic materials is essential for the advancement of energy-efficient spintronic device, which is typically achieved in systems composed of a spin source and a magnetic target, where the magnetic state of the target is altered by a charge current. While theories suggest that ferromagnets could function as more versatile spin sources, direct experimental studies involving only the spin source and target layers have been lacking. Here electrical manipulation of spin states in noncolinear antiferromagnet MnSn using ferromagnets (Ni, Fe, NiFe, CoFeB) as the spin sources is reported.
View Article and Find Full Text PDFThis paper takes the unexpected event of the new coronavirus as the research background, selects the daily closing price data of the financial sectors (banking, insurance, securities, and multifinance) from 20 June 2017 to 31 December 2023. It then applies the TVP-VAR-DY model to empirically study the risk spillover effect among financial sectors. The study identified three distinct stages: before, during, and after the epidemic.
View Article and Find Full Text PDFOral insulin delivery is considered a revolutionary alternative to daily subcutaneous injections in terms of compliance and convenience. However, significant challenges remain in terms of inactivation in gastrointestinal environment and limited permeation across the intestinal epithelium. Herein, we used acid-resistant metal-organic framework (PCN-222) to load insulin and modified the exterior with sodium dodecyl sulfate (SDS) to achieve efficient oral insulin delivery.
View Article and Find Full Text PDFIn order to shorten the process of textile printing with natural dyes, develop new methods, and improve the color fastness and quality of printed products, this study presents a novel approach by synthesizing a natural complex dye through the interaction between purpurin and Fe ions, resulting in a compound named purpurin-Fe (P-Fe). This synthesized complex dye was meticulously characterized using state-of-the-art analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Vis) spectrophotometry, and scanning electron microscopy energy-dispersive spectroscopy (EDS). The characterization confirmed the successful complexation of purpurin with Fe ions.
View Article and Find Full Text PDFYttrium iron garnet, a material possessing ultralow magnetic damping and extraordinarily long magnon diffusion length, is the most widely studied magnetic insulator in spintronics and magnonics. Field-free electrical control of perpendicular yttrium iron garnet magnetization with considerable efficiency is highly desired for excellent device performance. Here, we demonstrate such an accomplishment with a collinear spin current, whose spin polarization and propagation direction are both perpendicular to the interface.
View Article and Find Full Text PDFConventional textile dyeing relies on the use of dyes and pigments, which can cause severe environmental contamination and waste a large amount of water. Structural coloring is one of the effective ways to achieve environmentally friendly coloring of textiles. In this work, three plant polyphenols with the same o-benzenetriol structure (tannic acid (TA), gallic acid (GA), and tea polyphenol (TP)) were selected as raw materials.
View Article and Find Full Text PDFIn China and Southeast Asia, pre-fermented coconut water is commonly used for the production of nata de coco, a jelly-like fermented food that consists of bacterial cellulose (BC). The inherent natural fermentation process of coconut water introduces uncontrollable variables, which can lead to unstable yields during BC production. This study involved the collection of spontaneously pre-fermented coconut water over a five-month production cycle.
View Article and Find Full Text PDFTraditional textile dyeing uses chemical pigments and dyes, which consumes a large amount of water and causes serious environmental pollution. Structural color is an essential means of achieving green dyeing of textiles, and thin-film interference is one of the principles of structural coloring. In the assembly of structural color films, it is necessary to introduce dark materials to suppress light scattering and improve the brightness of the fabric.
View Article and Find Full Text PDFThe purpose of this study was to explore the effects of combined lead (Pb) and two types of microplastic (MP) (polyvinyl chloride [PVC] and polyethylene [PE]) exposure on glucose metabolism and investigate the role of the nuclear factor erythroid 2-related factor 2 (Nrf2)/nuclear factor-kappa B (NF-κB) signaling pathway in mediating these effects in mice. Adult C57BL/6J mice were randomly divided into four groups: control, Pb (100 mg/L), MPs (containing 10 mg/L PE and PVC), and Pb + MPs, each of which was treated with drinking water. Treatments were conducted for 6 weeks.
View Article and Find Full Text PDFBackground: Nurses at the frontline faced high risks of the COVID-19 infection, undertook heavy workloads of patient care, and experienced tremendous stress that often led to compassion fatigue.
Aim: This study was to explore the role of positive psychosocial resources (i.e.
Harmful cyanobacterial blooms have been a global environmental problem. Discharge of anthropogenic pollutants and excess nutrient import into the freshwater bodies may be the biggest drivers of bloom. Bisphenol A (BPA), a typical endocrine-disrupting compound, is frequently detected in different natural waters, which was a threat to the balance of aquatic ecosystem.
View Article and Find Full Text PDFThe occurrence of microplastics (MPs) within aquatic ecosystems attracts a major environmental concern. It was demonstrated MPs could cause various ecotoxicological effects on microalgae. However, existing data on the effects of MPs on microalgae showed great variability among studies.
View Article and Find Full Text PDFPerfluorinated or polyfluorinated compounds (PFCs) continue entering to the environmental as individuals or mixtures, but their toxicological information remains largely unknown. Here, we investigated the toxic effects and ecological risks of Perfluorooctane sulfonic acid (PFOS) and its substitutes on prokaryotes (Chlorella vulgaris) and eukaryotes (Microcystis aeruginosa). Based on the calculated EC values, the results showed that PFOS was significantly more toxic to both algae than its alternatives including Perfluorobutane sulfonic acid (PFBS) and 6:2 Fluoromodulated sulfonates (6:2 FTS), and the PFOS-PFBS mixture was more toxic to both algae than the other two PFC mixtures.
View Article and Find Full Text PDFThe impact of antibiotics on methane (CH) release from sediment involves both CH production and consumption processes. However, most relevant studies lack a discussion of the pathways by which antibiotics affect CH release and do not highlight the role played by the sediment chemical environment in this influence mechanism. Here, we collected field surface sediments and grouped them with various antibiotic combination concentration gradients (50, 100, 500, 1000 ng g) under a 35-day indoor anaerobic constant temperature incubation.
View Article and Find Full Text PDFPurpose: This study aims to establish the best prediction model of lymph node metastasis (LNM) in patients with intermediate- and high-risk prostate cancer (PCa) through machine learning (ML), and provide the guideline of accurate clinical diagnosis and precise treatment for clinicals.
Methods: A total of 24,470 patients with intermediate- and high-risk PCa were included in this study. Multivariate logistic regression model was used to screen the independent risk factors of LNM.
Lithium is an emerging environmental contaminant in the current low-carbon economy, but little is known about its influences on soil invertebrates. In this work, earthworm Eisenia fetida was exposed to soils treated with different levels of lithium for 7 d, and multiple ecotoxicological parameters were evaluated. The results showed that mortality was dose-dependent and lithium's median lethal content (LC) to earthworm was respectively 865.
View Article and Find Full Text PDFRadar is an extremely valuable sensing technology for detecting moving targets and measuring their range, velocity, and angular positions. When people are monitored at home, radar is more likely to be accepted by end-users, as they already use WiFi, is perceived as privacy-preserving compared to cameras, and does not require user compliance as wearable sensors do. Furthermore, it is not affected by lighting condi-tions nor requires artificial lights that could cause discomfort in the home environment.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2023
Heavy metals in the soil of industrial areas pose severe health risks to humans after land-use properties are transformed into residential land. The public exposure time and frequency will soar significantly under residential land. However, much uncertainty still exists about the relationship between soil heavy metal pollution and-human health risks in an old industrial zone in Shanghai, China.
View Article and Find Full Text PDF