Real-time wavefront correction is a challenging problem to present for conventional adaptive optics systems. Here, we present an all-optical system to realize real-time wavefront correction. Using deep learning, the system, which contains only multiple transmissive diffractive layers, is trained to realize high-quality imaging for unknown, random, distorted wavefronts.
View Article and Find Full Text PDFThe Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), also known as the Guoshoujing Telescope, is a major national scientific facility for astronomical research located in Xinglong, China. Beginning with a pilot survey in 2011, LAMOST has been surveying the night sky for more than 10 years. The LAMOST survey covers various objects in the Universe, from normal stars to peculiar ones, from the Milky Way to other galaxies, and from stellar black holes and their companions to quasars that ignite ancient galaxies.
View Article and Find Full Text PDFAll stellar-mass black holes have hitherto been identified by X-rays emitted from gas that is accreting onto the black hole from a companion star. These systems are all binaries with a black-hole mass that is less than 30 times that of the Sun. Theory predicts, however, that X-ray-emitting systems form a minority of the total population of star-black-hole binaries.
View Article and Find Full Text PDFThe LIGO detection of gravitational waves (GW) from merging black holes in 2015 marked the beginning of a new era in observational astronomy. The detection of an electromagnetic signal from a GW source is the critical next step to explore in detail the physics involved. The Antarctic Survey Telescopes (AST3), located at Dome A, Antarctica, is uniquely situated for rapid response time-domain astronomy with its continuous night-time coverage during the austral winter.
View Article and Find Full Text PDFA dual-channel lateral shearing beam splitter was used in a Fourier transform imaging spectrometer, forming a dual-channel imaging spectrometer, to investigate the usability of this technique for large field-of-view (FOV) spectral detection. The large FOV obtained by stitching together the different channels' individual FOVs greatly improved the spectral detection efficiency for large-area targets. This report describes the principle of the dual-rectangle lateral shearing beam splitter and the analysis of the lateral shearing distance, FOV, modulation, and method of dual-channel stitching.
View Article and Find Full Text PDFCurvature wavefront sensing usually requires the measurement of two defocused images at equal distances before and after the focus. In this paper, a new wavefront recovery algorithm based on only one defocused image is proposed. This algorithm contains the following four steps: response matrix calculation, establishment of intensity distribution equations, Zernike coefficients solution derived from the least squares method, and defocused image compensation with the solved Zernike coefficients.
View Article and Find Full Text PDFWe describe the measurement of atmospheric enclosure seeing along a 120-m light path by use of a Shack-Hartmann wave-front sensor (S-H WFS) for the first time to our knowledge in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) outdoor active-optics experiment system, based on the differential image motion method and a S-H WFS. Seeing estimates that were gained with the S-H WFS were analyzed and found to be in close agreement with the actual seeing conditions, the estimates of refractive-index structure constant, and the thin-mirror active optics results, which usually include the shape sensing precision and the active correction precision of the experimental system. Finally, some countermeasures against poor seeing conditions were considered and adopted.
View Article and Find Full Text PDF