Publications by authors named "Xiangquan Liu"

Article Synopsis
  • Germanium/silicon (Ge/Si) avalanche photodiodes (APDs) are important for near-infrared detection and quantum communication, but most research has focused on just one optical communication band.
  • This study introduces a lateral separate absorption multiplication (SAM) APD and looks at its performance across different wavelengths, finding that it performs significantly better at L-band (1600 nm) than at C-band (1550 nm).
  • The research shows a gain-bandwidth product of 279 GHz, revealing insights into why higher gains occur and suggesting that Ge/Si APDs could play a bigger role in optical communication technology.
View Article and Find Full Text PDF

Ocean acidification (OA) and other environmental factors can collectively affect marine organisms. Deltamethrin (DM), a type II pyrethroid insecticide, has been widely detected in coastal and estuarine areas, while little attention has been given to the combined effects of DM and OA. In this study, Haliotis discus hannai was exposed to three pH levels (8.

View Article and Find Full Text PDF

Rapid, on-site measurement of ppm-level humidity in real time remains a challenge. In this work, we fabricated a few micrometer thick, β-ketoenamine-linked covalent organic framework (COF) membrane via interfacially confined condensation of 1,3,5-tris-(4-aminophenyl)triazine (TTA) with 1,3,5-tri-formylphloroglucinol (TP). Based on the super-sensitive and reversible response of the COF membrane to water vapor, we developed a high-performance film-based fluorescence humidity sensor, depicting unprecedented detection limit of 0.

View Article and Find Full Text PDF

The effect of the addition of alkali earth element Ca on the microstructure and mechanical properties of extruded AZ91-0.4Ce-xCa (x = 0, 0.4, 0.

View Article and Find Full Text PDF

In this work, GeSn lateral p-i-n photodetectors (PDs) on insulator were fabricated with an active GeSn layer grown by the rapid melting growth (RMG) method. Taking advantages of the defect-free GeSn strips, GeSn PDs with 5.3 Sn content have low dark current and high responsivities, which are about 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a novel calix[4]pyrrole-based nanofilm designed for the rapid removal of radioactive iodine from water.
  • This nanofilm, synthesized through a unique chemical process, is only about 35 nm thick, allowing for quick mass transfer and a high number of binding sites for iodine.
  • Tests show that the nanofilm has a significantly high adsorption capacity and efficiency for iodine removal, along with the potential for reuse, indicating a promising new approach for water purification.
View Article and Find Full Text PDF

Flexible and highly ultraviolet (UV) sensitive materials garner considerable attention in wearable devices, adaptive sensors, and light-driven actuators. Herein, a type of nanofilms with unprecedented fully reversible UV responsiveness are successfully constructed. Building upon this discovery, a new system for ultra-fast, sensitive, and reliable UV detection is developed.

View Article and Find Full Text PDF

In this work, high-performance GeSn photodetectors with a Sn content gradient GeSn layer were fabricated on SOI substrate by CMOS-compatible process for C and L band telecommunication. The active GeSn layer has a Sn component increased from 9 to 10.7% with the controlled relaxation degree up to 84%.

View Article and Find Full Text PDF

Although numerous genetic, chemical, and physical strategies have been developed to remodel the cell surface landscape for basic research and the development of live cell-based therapeutics, new chemical modification strategies capable of decorating cells with various genetically/non-genetically encodable molecules are still urgently needed. Herein, we describe a remarkably simple and robust chemical strategy for cell surface modifications by revisiting the classical thiazolidine formation chemistry. Cell surfaces harbouring aldehydes can be chemoselectively conjugated with molecules containing a 1,2-aminothiol moiety at physiological pH without the need to use any toxic catalysts and complicated chemical synthesis.

View Article and Find Full Text PDF

In this paper, a carrier-injection electro-absorption modulator (EAM) at 2 µm is demonstrated on Ge-on-Si platform. The EAM shows a compact size and high modulation efficiency due to the strong free-carrier electroabsorption (FCEA) effect in Ge. A modulation depth of 40 dB can be obtained under the injection current of only 420 mA.

View Article and Find Full Text PDF

Synthesizing large-area free-standing covalent organic framework (COF) films is of vital importance for their applications but is still a big challenge. Herein, we reported the synthesis of large metalloporphyrin-based COF films and their applications for oxygen electrocatalysis. The reaction of meso-benzohydrazide-substituted metal porphyrins with tris-aldehyde linkers afforded free-standing COF films at the liquid-air interface.

View Article and Find Full Text PDF

In the present study, a histone H2A (designed as RpH2A) was identified and characterized from clam Ruditapes philippinarum, and its open reading frame (ORF) was of 387 bp encoding a polypeptide of 128 amino acids. The deduced amino acid sequence of RpH2A shared high identities ranging from 57.1% to 96.

View Article and Find Full Text PDF

A high-performance waveguide-coupled lateral avalanche photodetector (APD) is experimentally demonstrated without silicon epitaxy and charge layer ion implantation. At the wavelength of 1550 nm, it shows a high responsivity of 48 A/W and a gain-bandwidth product (GBP) of 360 GHz. Wide-open eye diagrams at 25 Gbps can be observed at various avalanche gains.

View Article and Find Full Text PDF

In this work, GeSn resonant cavity enhanced (RCE) p-i-n photodetectors (PDs) with 3.7% Sn content in a GeSn layer were fabricated on a silicon on insulator (SOI) substrate. The gold (Au) layer and the deposited SiO layer constitute the bottom reflector and top reflector of the RCE detectors, respectively.

View Article and Find Full Text PDF

A compact high-power germanium photodetector (Ge PD) is experimentally demonstrated by re-engineering light distribution in the absorber. Compared with a conventional Ge PD, the proposed structure shows a DC saturation photocurrent improved by 28.9% and 3 dB bandwidth as high as 49.

View Article and Find Full Text PDF

The development of ultrasensitive, durable and anti-jamming strain-pressure sensors that can precisely distinguish different motions or deformations is crucial for health diagnosis and disaster monitoring, but it also remains a challenge. In this study, a self-standing, highly flexible and uniform nanofilm (CuPTFA) was fabricated via interfacial covalent condensation of a copper complex of 5,10,15,20-tetra(4-carboxyphenyl)-porphine tetrahydrizides (Cu-TPPNHNH) and tris-(4-formylphenyl)-amine (TFA). The film was used as a sensing layer in a strain-pressure sensor with a sandwich-like structure of Au/I@CuPTFA/Au.

View Article and Find Full Text PDF

Preparation of nanofilms which are able to reject water-soluble low molecular weight organic compounds in nanofiltration remains to be a challenge. Herein, we report a new kind of self-standing, defect-free, robust, centimeter-sized and thickness controllable calix[4]pyrrole (C[4]P)-based nanofilms with excellent molecular sieving performance in nanofiltration. The nanofilms were prepared via confined dynamic condensation of the tetra-benzoyl-hydrazine derivative of calix[4]pyrrole (CPTBH) with 1,3,5-benzenetricarboxaldehyde (BTC) at the air/dimethyl sulfoxide (DMSO) interface.

View Article and Find Full Text PDF

The 14-3-3 proteins play important roles in various cellular processes by binding to different ligands, but little is known about these proteins in mollusks. In this study, two 14-3-3 cDNAs were identified from the Pacific abalone Haliotis discus hannai (designated 14-3-3ζ and 14-3-3ε), possessing 59.40% identity with each other.

View Article and Find Full Text PDF

The modular construction of defect-free nanofilms with a large area remains a challenge. Herein, we present a scalable strategy for the preparation of calix[4]pyrrole (C[4]P)-based nanofilms through acryl hydrazone reaction conducted in a tetrahydrazide calix[4]pyrrole (CPTH)-based self-assembled layer at the air/DMSO interface. With this strategy, robust, regenerable, and defect-free nanofilms with an exceptionally large area (∼750 cm) were constructed.

View Article and Find Full Text PDF

A high-power germanium photodetector is designed and fabricated using a cold-wall ultrahigh vacuum chemical vapor deposition. A back-to-back dual-absorption structure improves high-power characteristics by reducing the space-charge effect. Compared to a typical p-i-n photodetector, the saturated photocurrent of the back-to-back dual-absorption photodetector is improved from 16.

View Article and Find Full Text PDF

GePb photodetectors (PDs) with a GePb layer grown on n-type Ge (100) substrate by magnetron sputtering epitaxy were fabricated by complementary metal-oxide semiconductor (CMOS)-compatible technology. For GePb PDs, the room-temperature dark current density at -1 V was 3.3 A/cm.

View Article and Find Full Text PDF

BACKGROUND Lead (Pb) is a widely used metal in modern industry and is regarded as a health hazard. Although lead-induced genotoxicity has been confirmed, the direct evidence that lead induces genotoxicity in human cells and its related mechanisms has not been fully elucidated. In this study, for the first time, we evaluated the genotoxicity induced by lead in human lymphoblastoid TK6 cells.

View Article and Find Full Text PDF

Peptidoglycan recognition proteins (PGRPs) are indispensable molecules in innate immunity due to their prominent function in sensing and eliminating invading microorganisms. In the present study, a short type PGRP from razor clam Solen grandis (SgPGRP-S1) was recombinantly expressed and purified to investigate its potential function in innate immunity. As a pattern recognition receptor, recombinant SgPGRP-S1 (rSgPGRP-S1) specifically bind Lys-type and Dap-type peptidoglycan in vitro, but not lipopolysaccharide or β-glucan.

View Article and Find Full Text PDF

Sialic acid-binding lectins (SABLs) are ubiquitous ancient molecules with binding properties to N-acetyl or N-glycolyl carbohydrates, and play crucial roles in both adaptive and innate immune responses. In present study, recombinant protein and antibodies of two SABLs from mollusk Solen grandis (SgSABL-1 and SgSABL-2) were prepared to investigate their functions in innate immunity. The recombinant protein of SgSABL-1 (rSgSABL-1) could bind LPS, PGN and β-glucan in vitro, while rSgSABL-2 could only bind PGN rather than LPS and β-glucan.

View Article and Find Full Text PDF

C-type lectin is one important pattern recognition receptor (PRR) that plays crucial roles in multiple immune responses. A C-type lectin from sea cucumber Apostichopus japonicus (AjCTL-1) was characterized in the present study. The amino acid sequence of AjCTL-1 shared high similarities with other C-type lectins from invertebrates and vertebrates.

View Article and Find Full Text PDF