Introduction: Drip irrigation under mulch film promotes a non-uniform salinity distribution in salt fields. The effect of different N application methods on the growth and yield of cotton under drip irrigation under mulch film conditions in eastern coastal saline-alkaline soils in China remain remained unclear.
Methods: A randomized complete block design was used in the experiment.
Soil salinity is often heterogeneous in saline fields. Nonuniform root salinity increases nitrate uptake into cotton (Gossypium hirsutum) root portions exposed to low salinity, which may be regulated by root portions exposed to high salinity through a systemic long-distance signaling mechanism. However, the signals transmitted between shoots and roots and their precise molecular mechanisms for regulating nitrate uptake remain unknown.
View Article and Find Full Text PDFElongated hypocotyls 5 (HY5) is a transcription factor that can be induced by illumination and promotes nitrate uptake in Arabidopsis. However, whether GhHY5 regulates nitrate uptake in cotton is unknown. In this study, the cotton seedlings growing in light and dark conditions were treated with N-labeled nutrient solution to study whether the GhHY5 regulates nitrate uptake in cotton.
View Article and Find Full Text PDFApical hook formation is essential for the emergence and stand establishment of cotton plants. Searching for agronomic measures to regulate apical hook formation and clarifying its mechanism are important for full stand establishment in cotton. In this study, cotton seeds were sown at varying seeding rates or depths in sand to determine if and how apical hook formation was regulated by seeding rates or depths.
View Article and Find Full Text PDFPartial root-zone irrigation (PRI), a water-saving technique, improves water uptake in hydrated roots by inducing specific responses that are thought to be regulated by signals originating from leaves; however, this signaling is poorly understood. Using a split-root system and polyethylene glycol 6000 to simulate PRI in cotton (), we showed that increased root hydraulic conductance () and water uptake in the hydrated roots may be due to the elevated expression of cotton plasma membrane intrinsic protein (PIP) genes. Jasmonate (jasmonic acid [JA] and jasmonic acid-isoleucine conjugate [JA-Ile]) content and the expression of three JA biosynthesis genes increased in the leaves of the PRI plants compared with those of the polyethylene glycol-free control.
View Article and Find Full Text PDFCotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control)-, 10-, 15- and 20-d waterlogging at flowering stage.
View Article and Find Full Text PDFNon-uniform salinity alleviates salt damage through sets of physiological adjustments in Na transport in leaf and water and nutrient uptake in the non-saline root side. However, little is known of how non-uniform salinity induces these adjustments. In this study, RNA sequencing (RNA-Seq) analysis shown that the expression of sodium transport and photosynthesis related genes in the non-uniform treatment were higher than that in the uniform treatment, which may be the reason for the increased photosynthetic (Pn) rate and decreased Na content in leaves of the non-uniform salinity treatment.
View Article and Find Full Text PDFA new split-root system was used to simulate non-uniform salt, drought or nutrient deficiency stress in the root zone, in which the root system was divided into two or more equal portions. Here, we established a split-root system by grafting of cotton seedlings. In contrast to the conventional split-root, the main roots of the new system remained intact, which provided a better system for studying cotton response to unequal treatment in the root zone.
View Article and Find Full Text PDFNon-uniform root salinity increases the Na(+)efflux, water use, and growth of the root in non-saline side, which may be regulated by some form of signaling induced by the high-salinity side. However, the signaling and its specific function have remained unknown. Using a split-root system to simulate a non-uniform root zone salinity in Gossypium hirsutum L.
View Article and Find Full Text PDFMany secondary metabolites have insecticidal efficacy against pests and may be affected by abiotic stress. However, little is known of how plants may respond to such stress as pertains the growth and development of pests. The objective of this study was to determine if and how salt stress on cotton plants affects the population dynamics of aphids.
View Article and Find Full Text PDFLeaf senescence varies greatly among genotypes of cotton (Gossypium hirsutium L), possibly due to the different expression of senescence-related genes. To determine genes involved in leaf senescence, we performed genome-wide transcriptional profiling of the main-stem leaves of an early- (K1) and a late-senescence (K2) cotton line at 110 day after planting (DAP) using the Solexa technology. The profiling analysis indicated that 1132 genes were up-regulated and 455 genes down-regulated in K1 compared with K2 at 110 DAP.
View Article and Find Full Text PDFA new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100 mM) or non-uniform NaCl concentrations (0/200 and 50/150 mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side.
View Article and Find Full Text PDFPotassium (K+) and chloride (Cl-) are two essential elements for plant growth and development. While it is known that plants possess specific membrane transporters for transporting K+ and Cl-, it remains unclear if they actively use K+-coupled Cl- cotransporters (KCC), as used in animals, to transport K+ and Cl-. We have cloned an Oryza sativa cDNA encoding for a member of the cation-Cl- cotransporter (CCC) family.
View Article and Find Full Text PDF