Identification and quantification of sesame oil products are crucial due to the existing problems of adulteration with lower-priced oils and false labeling of sesame proportions. In this study, 1D CNN models were established to achieve discrimination of oil types and multiple quantification of adulteration using portable Raman spectrometer. An improved data augmentation method involving discarding transformations that alter peak positions was proposed, and synchronously injecting noise during geometric transformations.
View Article and Find Full Text PDF