Publications by authors named "Xiangnian Ou"

Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies.

View Article and Find Full Text PDF
Article Synopsis
  • - The text discusses digital micromirror devices used in projection displays, noting their rapid beam steering but limitations in resolution, steering angle, and stability due to microelectromechanical system constraints.
  • - It contrasts these with Liquid Crystal on Silicon technology, which offers high resolution and stability but suffers from polarization dependence, leading to complex systems and low efficiency.
  • - The paper proposes a hybrid device that integrates metallic metasurfaces with liquid crystals to enable polarization-independent beam steering with large-angle deflections, demonstrating its effectiveness through simulations and suggesting optimization for improved efficiency.
View Article and Find Full Text PDF

Dispersion decomposes compound light into its monochromatic components, which is detrimental to broadband imaging but advantageous for spectroscopic applications. Metasurfaces provide a unique path to modulate the dispersion by adjusting structural parameters on a two-dimensional plane. However, conventional linear phase compensation does not adequately match the meta-unit's dispersion characteristics with required complex dispersion, hindering at-will dispersion engineering over a very wide bandwidth particularly.

View Article and Find Full Text PDF

Metasurfaces can perform high-performance multi-functional integration by manipulating the abundant physical dimensions of light, demonstrating great potential in high-capacity information technologies. The orbital angular momentum (OAM) and spin angular momentum (SAM) dimensions have been respectively explored as the independent carrier for information multiplexing. However, fully managing these two intrinsic properties in information multiplexing remains elusive.

View Article and Find Full Text PDF

Tunable metasurfaces provide a compact and efficient strategy for optical active wavefront shaping. Varifocal metalens is one of the most important applications. However, the existing tunable metalens rarely serves broadband wavelengths restricting their applications in broadband imaging and color display due to chromatic aberration.

View Article and Find Full Text PDF

Replacing electrons with photons is a compelling route toward high-speed, massively parallel, and low-power artificial intelligence computing. Recently, diffractive networks composed of phase surfaces were trained to perform machine learning tasks through linear optical transformations. However, the existing architectures often comprise bulky components and, most critically, they cannot mimic the human brain for multitasking.

View Article and Find Full Text PDF

Metasurfaces open up new avenues for designing planar optics, enabling compact dynamic metadevices. Numerous dynamic strategies have been proposed, among which liquid crystal (LC) based metasurfaces are expected due to the maturity of LC materials. However, existing schemes rarely exploit the polarization manipulation capabilities of metasurfaces and the limited performance hinders the development of practical addressable devices.

View Article and Find Full Text PDF