Accumulating evidence supports the notion that microglia play versatile roles in different chronic pain conditions. However, therapeutic strategies of chronic pain by targeting microglia remain largely overlooked. This study seeks to develop a miRNA-loaded nano-delivery system by targeting microglia, which could provide a decent and long-lasting analgesia for chronic pain.
View Article and Find Full Text PDFYippee-like 2 (YPEL2) is expressed in tissues and organs enriched in vascular networks, such as heart, kidney, and lung. However, the roles of YPEL2 in endothelial cell senescence and the expression of YPEL2 in atherosclerotic plaques have not yet been investigated. Here, we report the essential role of YPEL2 in promoting senescence in human umbilical vein endothelial cells (HUVECs) and the upregulation of YPEL2 in human atherosclerotic plaques.
View Article and Find Full Text PDFBackground: Inflammation often leads to the occurrence of chronic pain, and many miRNAs have been shown to play a key role in the development of inflammatory pain. However, whether miR-26a-5p relieves pain induced by inflammation and its possible mechanism are still unclear.
Methods: The complete Freund's adjuvant (CFA)-induced inflammatory pain mouse model was employed.
Background: Mesenchymal stem cell (MSCs)-derived small Extracellular Vesicles (sEVs) are considered as a new cell-free therapy for pain caused by nerve injury, but whether human placental mesenchymal stem cell-derived sEVs relieve pain in sciatic nerve injury and its possible mechanism are still unclear. In this study, we investigated the roles of hPMSCs-derived sEVs and related mechanisms in neuropathic pain.
Methods: The spared nerve injury (SNI) mouse model was employed.
Celastrol plays a significant role in cerebral ischemia-reperfusion injury. Although previous studies have confirmed that celastrol post-treatment has a protective effect on ischemic stroke, the therapeutic effect of celastrol on ischemic stroke and the underlying molecular mechanism remain unclear. In the present study, focal transient cerebral ischemia was induced by transient middle cerebral artery occlusion (tMCAO) in mice and celastrol was administered immediately after reperfusion.
View Article and Find Full Text PDFPropofol is a widely used intravenous agent for the induction and maintenance of anesthesia. An increasing number of studies have shown that propofol modulates autophagy, which is an evolutionarily conserved catabolic process that maintains cellular homeostasis by degrading long-lived proteins and damaged cellular proteins or organelles. Extensive studies have been performed to better understand the regulation of autophagy by propofol, the majority of which have demonstrated that the effects of propofol on autophagy are beneficial to organs and tissues.
View Article and Find Full Text PDF