Publications by authors named "Xiangming Xie"

Deoxynivalenol (DON) is one of the most devastating and notorious contaminants in food and animal feed worldwide. A novel DON-degrading strain, sp. ZHH-013, which exhibited complete mineralization of DON, was isolated from soil samples.

View Article and Find Full Text PDF

Swollenins exist within some fungal species and are candidate accessory proteins for the biodegradation of cellulosic substrates. Here, we describe the identification of a swollenin gene, , in JCM12802. was successfully expressed in both and .

View Article and Find Full Text PDF

Phenotypic plasticity enables individuals to develop different phenotypes in a changing environment and promotes adaptive evolution. Genome-wide association study (GWAS) facilitates the study of the genetic basis of bacterial phenotypes, and provides a new opportunity for bacterial phenotypic plasticity research. To investigate the relationship between growth plasticity and genotype in bacteria, 41 strains, including 29 vancomycin-intermediate (VISA) strains, were inoculated in the absence or presence of vancomycin for 48 h.

View Article and Find Full Text PDF

Efficient utilization of cellulose and xylan is of importance in the bioethanol industry. In this study, a novel bifunctional xylanase/cellulase gene, Tcxyn10a, was cloned from Thermoascus crustaceus JCM12803, and the gene product was successfully overexpressed in Pichia pastoris GS115. The recombinant protein was then purified and characterized.

View Article and Find Full Text PDF

Cellulases from glycoside hydrolase family 5 (GH5) are key endoglucanase enzymes in the degradation of diverse polysaccharide substrates and are used in industrial enzyme cocktails to break down biomass. The GH5 family shares a canonical (βα)-barrel structure, where each (βα) module is essential for the enzyme's stability and activity. Despite their shared topology, the thermostability of GH5 endoglucanase enzymes can vary significantly, and highly thermostable variants are often sought for industrial applications.

View Article and Find Full Text PDF

Background: Cellulases of glycosyl hydrolase (GH) family 5 share a (β/α) TIM-barrel fold structure with eight βα loops surrounding the catalytic pocket. These loops exposed on the surface play a vital role in protein functions, primarily due to the interactions of some key amino acids with solvent and ligand molecules. It has been reported that motions of these loops facilitate substrate access and product release, and loops 6 and 7 located at the substrate entrance of the binding pocket promote proton transfer reaction at the catalytic site motions.

View Article and Find Full Text PDF

Xylanase is a high-profile glycoside hydrolase with applications in brewing, feed, pharmacy and bioenergy industries, but most of xylanases are in active below 30 ℃. In order to obtain low temperature active xylanase, a xylanase gene, XYN11A, was cloned from Penicillium sp. L1 and expressed in Pichia pastoris GS115.

View Article and Find Full Text PDF

Extremophilic xylanases have attracted great scientific and industrial interest. In this study, a GH10 xylanase-encoding gene, Xyl10E, was cloned from Bispora sp. MEY-1 and expressed in Pichia pastoris GS115.

View Article and Find Full Text PDF

Thermophilic xylanases with high catalytic efficiency are of great interest in the biofuel, food and feed industries. This study identified a GH11 xylanase gene, Tlxyn11B, in Talaromyces leycettanus JCM12802. Recombinant TlXyn11B produced in Pichia pastoris is distinguished by high specific activity (8259 ± 32 U/mg with beechwood xylan as substrate) and excellent pH stability (from 1.

View Article and Find Full Text PDF

Vast interest exists in developing T. reesei for production of heterologous proteins. Although rich genomic and transcriptomic information has been uncovered for the T.

View Article and Find Full Text PDF

Increased use of vancomycin has led to the emergence of vancomycin-intermediate (VISA). To investigate the mechanism of VISA development, 39 methicillin-susceptible strains and 3 MRSA strains were treated with vancomycin to induce non-susceptibility, and mutations in six genes were analyzed. All the strains were treated with vancomycin for 60 days.

View Article and Find Full Text PDF

A xylanase gene of GH 10, Tlxyn10A, was cloned from Talaromyces leycettanus JCM12802 and expressed in Pichia pastoris. Purified recombinant TlXyn10A was acidic and hyperthermophilic, and retained stable over the pH range of 2.0-6.

View Article and Find Full Text PDF

The aim of this work was to study the contribution of the N-terminal structure to cellulase catalytic performance. A wild-type cellulase (BaCel5) of glycosyl hydrolase (GH) family 5 from Bispora antennata and two hybrid enzymes (BaCel5(127) and BaCel5(167)) with replacement of the N-terminal (βα)3 (127 residues) or (βα)4 (167 residues)-barrel with the corresponding sequences of TeEgl5A from Talaromyces emersonii were produced in Pichia pastoris and biochemically characterized. BaCel5 exhibited optimal activity at pH 5.

View Article and Find Full Text PDF

A xylanase gene of glycoside hydrolase family 10, GtXyn10, was cloned from Gloeophyllum trabeum CBS 900.73 and expressed in Pichia pastoris GS115. Purified recombinant GtXyn10 exhibited significant activities to xylan (100.

View Article and Find Full Text PDF

Many glycoside hydrolases involved in deconstruction of cellulose and xylan from the excellent plant cell wall polysaccharides-degrader Caldicellulosiruptor bescii have been cloned and analyzed. However, far less is known about the enzymatic breakdown of mannan, an important component of hemicellulose. We herein cloned, expressed and purified the first β-mannosidase CbMan2A from C.

View Article and Find Full Text PDF

An endo-β-1,4-glucanase gene, cel7A, was cloned from the thermophilic cellulase-producing fungus Neosartorya fischeri P1 and expressed in Pichia pastoris. The 1,410-bp full-length gene encodes a polypeptide of 469 amino acids consisting of a putative signal peptide at residues 1-20, a catalytic domain of glycoside hydrolase family 7 (GH7), a short Thr/Ser-rich linker and a family 1 carbohydrate-binding module (CBM 1). The purified recombinant Cel7A had pH and temperature optima of pH 5.

View Article and Find Full Text PDF

Saccharomonospora viridis is a thermophilic actinomycete that may have biotechnological applications because of its dye decolorizing activity, though the enzymatic oxidative system responsible for this activity remains elusive. Bioinformatic analysis revealed a DyP-type peroxidase gene in the genome of S. viridis DSM 43017 with sequence similarity to peroxidase from dye-decolorizing microbes.

View Article and Find Full Text PDF

Organogenesis is an important process for plant regeneration by tissue or cell mass differentiation to regenerate a complete plant. MicroRNAs (miRNAs) play an essential role in regulating plant development by mediating target genes at transcriptional and post-transcriptional levels, but the diversity of miRNAs and their potential roles in organogenesis of Acacia crassicarpa have rarely been investigated. In this study, approximately 10 million sequence reads were obtained from a small RNA library, from which 189 conserved miRNAs from 57 miRNA families, and 7 novel miRNAs from 5 families, were identified from A.

View Article and Find Full Text PDF

The development of novel broad-spectrum, antiviral agents against H5N1 infection is urgently needed. In this study, we evaluated the immunomodulatory activities and protective effect of Eupatorium adenophorum polysaccharide (EAP) against the highly pathogenic H5N1 subtype influenza virus. EAP treatment significantly increased the production of IL-6, TNF- α , and IFN- γ both in vivo and in vitro as measured by qPCR and ELISA.

View Article and Find Full Text PDF

A xylanase gene, designated Svixyn10A, was cloned from actinomycetes Saccharomonospora viridis and the gene product was characterized. Gene Svixyn10A contains 1,374 bp and encodes a polypeptide of 457 amino acids composed of a glycoside hydrolase family 10 catalytic domain with a putative signal peptide, a short Gly-rich linker and a family 2 carbohydrate-binding module (CBM). The deduced amino acid sequence of SviXyn10A shared the highest identity (57 %) with a hypothetical xylanase from Streptomyces lividans TK24 (ZP_05528201).

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers isolated two cadmium-resistant strains identified as Bacillus cereus and Enterobacter cloacae, assessing their characteristics through various methods.
  • * E. cloacae exhibited greater resistance to heavy metals and a broader range of antibiotic resistance compared to B. cereus, highlighting its potential for bioremediation.
View Article and Find Full Text PDF

Temperature-sensitive (TS) mutants of a gene are ones of which the activity or phenotype is very similar to that of wild type only at certain temperature and they provide extremely powerful tool for studying protein function in vivo. Here we report a novel strategy to generate TS phenotype of the interest gene in Escherichia coli based on a temperature-sensitive T7-expression system. A TS T7-RNA polymerase is generated by interrupting it with a TS intein from Saccharomyces cerevisiae vacuolar ATPase subunit (VMA), resulting that the gene flanked by T7-promoter and T7-terminator will be transcribed only at the permissive temperature (18 degrees C), not at the restrictive temperature (37 degrees C).

View Article and Find Full Text PDF