Publications by authors named "Xianglong Xing"

With the intensification of climate change and human activities, wetland ecosystem and their carbon pool function have been seriously compromised. To determine the soil organic carbon pool composition and stability response to wetland disturbance, three disturbed (grazing, mowing, invasion) and two undisturbed Carex tussock wetlands were investigated in Momoge Wetland, northeast China. The results showed that the disturbance significantly reduced the soil organic carbon content under hummock, but effectively promoted organic carbon storage in surface soil in hummock interspace.

View Article and Find Full Text PDF

Conductive cardiac patches can rebuild the electroactive microenvironment for the infarcted myocardium but their repair effects benefit by carried seed cells or drugs. The key to success is the effective integration of electrical stimulation with the microenvironment created by conductive cardiac patches. Besides, due to the concerns in a high re-admission ratio of heart patients, a remote medicine device will underpin the successful repair.

View Article and Find Full Text PDF

Large-pore hydrogels are better suited to meet the management needs of nutrient transportation and gas exchange between infected burn wounds and normal tissues. However, better construction strategies are required to balance the pore size and mechanical strength of hydrogels to construct a faster substance/gas interaction medium between tissues. Herein, we developed spongy large pore size hydrogel (CS-TA@Lys) with good mechanical properties using a simple ice crystal-assisted method based on chitosan (CS), incorporating tannic acid (TA) and ε-polylysine (Lys).

View Article and Find Full Text PDF

Cell implantation offers an appealing avenue for heart repair after myocardial infarction (MI). Nevertheless, the implanted cells are subjected to the aberrant myocardial niche, which inhibits cell survival and maturation, posing significant challenges to the ultimate therapeutic outcome. The functional cardiac patches (CPs) have been proved to construct an elastic conductive, antioxidative, and angiogenic microenvironment for rectifying the aberrant microenvironment of the infarcted myocardium.

View Article and Find Full Text PDF

Engineering cardiac patches are proven to be effective in myocardial infarction (MI) repair, but it is still a tricky problem in tissue engineering to construct a scaffold with good biocompatibility, suitable mechanical properties, and solid structure. Herein, decellularized fish skin matrix is utilized with good biocompatibility to prepare a flexible conductive cardiac patch through polymerization of polydopamine (PDA) and polypyrrole (PPy). Compared with single modification, the double modification strategy facilitated the efficiency of pyrrole polymerization, so that the patch conductivity is improved.

View Article and Find Full Text PDF