Publications by authors named "Xianglin Tao"

Dermatophagoides farinae (Acari: Pyroglyphidae) has been reported as one of the major sources of indoor allergens that trigger allergic disease in humans. In this study, the genetic diversity and differentiation of nine geographic populations of D. farinae were investigated by analyzing mitochondrial and nuclear genes (COI, Cytb, COI+Cytb, and ITS).

View Article and Find Full Text PDF

Astigmatid mites are economically significant pests of stored products and sources of inhalant allergens causing allergic rhinitis and asthma worldwide. The morphological identification of astigmatid mites at the species level is often a difficult task due to their small size, phenotypic similarity and lack of diagnostic characters. We used multiplex polymerase chain reaction (PCR) to identify astigmatid mite species, which could complement the morphological data for the species-specific identification of mites.

View Article and Find Full Text PDF

UV irradiation induces the formation of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts in DNA. These two types of lesions can be directly photorepaired by CPD photolyases and 6-4 photolyases, respectively. Recently, a new class of 6-4 photolyases named iron-sulfur bacterial cryptochromes and photolyases (FeS-BCPs) were found, which were considered as the ancestors of all photolyases and their homologs-cryptochromes.

View Article and Find Full Text PDF

The species of the genus Anaplasma are obligate intracellular pathogens that threaten the health of both humans and animals. In this study, we investigated the presence of Anaplasma phagocytophilum, A. ovis and A.

View Article and Find Full Text PDF

Our study reports a case of acarodermatitis caused by . By morphological observations, the mites seized were identified as (deutonymph) which could attack humans resulting in acarodermatitis characterized with the symptoms of papules and blisters in different degrees. The patient was treated with 15% calamine lotion and anti-inflammatory and antipruritic drugs.

View Article and Find Full Text PDF

Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method.

View Article and Find Full Text PDF

A challenge associated with the ethanol productivity under very-high-gravity (VHG) conditions, optimizing multi-traits (i.e. byproduct formation and stress tolerance) of industrial yeast strains, is overcome by a combination of metabolic engineering and genome shuffling.

View Article and Find Full Text PDF

A gene encoding phytoene desaturase (crtI) in the carotenoid biosynthetic pathway of Sphingomonas elodea ATCC 31461, an industrial gellan gum-producing strain, was cloned and identified. This gene is predicted to encode a 492-amino acid protein with significant homology to the phytoene desaturase of other carotenogenic organisms. Knockout of crtI gene blocked yellow carotenoid pigment synthesis and resulted in the accumulation of colorless phytoene, confirming that it encodes phytoene desaturase.

View Article and Find Full Text PDF

In this study, a systemic analysis was initially performed to investigate the relationship between fermentation-related stress tolerances and ethanol yield. Based on the results obtained, two elite Saccharomyces cerevisiae strains, Z8 and Z15, with variant phenotypes were chosen to construct strains with improved multi-stress tolerance by genome shuffling in combination with optimized initial selection. After three rounds of genome shuffling, a shuffled strain, YZ1, which surpasses its parent strains in osmotic, heat, and acid tolerances, was obtained.

View Article and Find Full Text PDF

Acetic acid existing in a culture medium is one of the most limiting constraints in yeast growth and viability during ethanol fermentation. To improve acetic acid tolerance in Saccharomyces cerevisiae strains, a drug resistance marker-aided genome shuffling approach with higher screen efficiency of shuffled mutants was developed in this work. Through two rounds of genome shuffling of ultraviolet mutants derived from the original strain 308, we obtained a shuffled strain YZ2, which shows significantly faster growth and higher cell viability under acetic acid stress.

View Article and Find Full Text PDF

White-rot fungus manganese peroxidase (MnP) that has great potential in degrading azo dyes is one of the extracellular glycolsylated heme proteins. MnP from Schizophyllum sp. F17 was isolated and purified by Sephadex G-75 gel filtration chromatography followed by DEAE-cellulose anion exchange chromatography.

View Article and Find Full Text PDF