Publications by authors named "Xianglai Li"

Vanillyl alcohol is a precursor of vanillin, which is one of the most widely used flavor compounds. Currently, vanillyl alcohol biosynthesis still encounters the problem of low efficiency. In this study, coculture engineering was adopted to improve production efficiency of vanillyl alcohol in .

View Article and Find Full Text PDF

Orotate (OA) is a precursor of pyrimidine nucleotides and is widely used in food, pharmaceutical, and cosmetic industries. Although various microorganisms have been used for OA production, the production efficiency needs to be further improved for industrial application. In this study, we engineered Escherichia coli native metabolism for efficient OA production.

View Article and Find Full Text PDF

Dencichine is a plant-derived nature product that has found various pharmacological applications. Currently, its natural biosynthetic pathway is still elusive, posing challenge to its heterologous biosynthesis. In this work, we design artificial pathways through retro-biosynthesis approaches and achieve de novo production of dencichine.

View Article and Find Full Text PDF

Ferulic acid (FA) is a natural methylated phenolic acid which represents various bioactivities. Bioproduction of FA suffers from insufficient methyl donor supplement and inefficient hydroxylation. To overcome these hurdles, we first activate the S-adenosylmethionine (SAM) cycle in E.

View Article and Find Full Text PDF

Microbial coculture engineering has emerged as a promising strategy for biomanufacturing. Stability and self-regulation pose a significant challenge for the generation of intrinsically robust cocultures for large-scale applications. Here, we introduce the use of multi-metabolite cross-feeding (MMCF) to establish a close correlation between the strains and the design rules for selecting the appropriate metabolic branches.

View Article and Find Full Text PDF

Cascade reactions catalyzed by two or more enzymes have been widely used in industrial production and exhibited many advantages over the single-enzyme catalytic system. In this study, two components of hydroxylase monooxygenase (HpaBC) were first co-immobilized by Ni-nitrilotriacetic acid (Ni-NTA) functionalized magnetic silica nanoparticles (Ni-NTA/HN-SiO@FeO) for enhancing the stability and activity of biocatalysts with multi-components. These two components, HpaB and HpaC, were modified with histidine-tag and employed to construct a bi-enzyme catalytic system.

View Article and Find Full Text PDF

Salicylate (SA) is an important platform chemical widely used in cosmetic and pharmaceutical industries. In this study, an efficient SA producing strain was constructed by step-by-step chromosome integration. First, the SA biosynthetic module controlled by promoters P or P was integrated into the chromosome of E.

View Article and Find Full Text PDF

3, 4-Dihydroxyphenylacetic acid (3, 4-DHPA) is a phenolic acid with strong anti-oxidative activity, showing potential applications in food and pharmaceutical industries. In this study, a 3, 4-DHPA biosynthetic pathway was designed by connecting 4-hydroxyphenylacetic acid (4-HPA) biosynthesis with its hydroxylation. The starting strain produced only 46 mg/L of 4-HPA in 48 h.

View Article and Find Full Text PDF

Hydroxytyrosol (HT) is a valuable natural phenolic compound with strong antioxidant activity and various physiological and pharmaceutical functions. In this study, we established an artificial pathway for HT biosynthesis. First, efficient enzymes were selected to construct a tyrosol biosynthetic pathway.

View Article and Find Full Text PDF