Publications by authors named "Xiangkun Bo"

Human-machine interfaces and wearable electronics, as fundamentals to achieve human-machine interactions, are becoming increasingly essential in the era of the Internet of Things. However, contemporary wearable sensors based on resistive and capacitive mechanisms demand an external power, impeding them from extensive and diverse deployment. Herein, a smart wearable system is developed encompassing five arch-structured self-powered triboelectric sensors, a five-channel data acquisition unit to collect finger bending signals, and an artificial intelligence (AI) methodology, specifically a long short-term memory (LSTM) network, to recognize signal patterns.

View Article and Find Full Text PDF

Boosting stretchability and electric output is critical for high-performance wearable triboelectric nanogenerators (TENG). Herein, for the first time, a new approach for tuning the composition of surface functional groups through surfactant self-assembly to improve the tribopositivity, where the assembly increases the transferred charge density and the relative permittivity of water polyurethane (WPU). Incorporating bis(trifluoromethanesulfonyl)imide (TFSI) and alkali metal ions into a mixture of WPU and the surfactant forms a stretchable film that simultaneously functions as positive tribolayer and electrode, preventing the conventional detachment of tribolayer and electrode in long term usage.

View Article and Find Full Text PDF

Both angiogenesis and lncRNAs play crucial roles in the development and progression of breast cancer. Considering the unknown association of angiogenesis and lncRNAs in breast cancer, we aim to identify angiogenesis-related lncRNAs (ARLs) and explore their prognostic value. Here, based on analysis of The Cancer Genome Atlas database, the correlation between ARL and the prognosis and immune infiltration landscape of breast cancer were investigated.

View Article and Find Full Text PDF

Stretchable power devices and self-powered sensors have become increasingly desired for wearable electronics and artificial intelligence. In this study, an all-solid-state triboelectric nanogenerator (TENG) is reported, whose one solid-state structure prevents delamination during stretch and release cycles and increasing the patch adhesive force (3.5 N) and strain (586% elongation at break).

View Article and Find Full Text PDF

Aims: The aim of this study was to evaluate the effect of PDX-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation-1) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homolog A) in the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells and to explore this new approach of cell transplantation therapy for type 1 diabetes in mice.

Methods: iPSCs were infected with adenovirus (Ad-Mouse PDX-1-IRES-GFP, Ad-Mouse NeuroD1-IRES-GFP and Ad-Mouse Mafa-IRES-GFP) and then differentiated into insulin-producing cells in vitro. RT-PCR was applied to detect insulin gene expression, immunofluorescence to identify insulin protein, and mouse insulin enzyme-linked immunosorbent assay (ELISA) was used to evaluate the amount of insulin at different concentration of glucose.

View Article and Find Full Text PDF