Publications by authors named "Xiangjun Xing"

Article Synopsis
  • The study focuses on the stochastic thermodynamics of particles moving in a flowing fluid, treating flow as a nonconservative force affecting the motion of Brownian particles.
  • It defines heat and work at different levels and rigorously demonstrates the second law of thermodynamics, showing how entropy is produced from different contributions.
  • The research develops fluctuation theorems related to work and validates findings through numerical simulations, while also comparing results with prior theories from Speck et al.
View Article and Find Full Text PDF

We further develop the strong-coupling theory of thermodynamics and stochastic thermodynamics for continuous systems, constructed in the previous work [Phys. Rev. Res.

View Article and Find Full Text PDF

Magnetic Weyl semimetals (MWSMs) exhibit unconventional transport phenomena, such as large anomalous Hall (and Nernst) effects, which are absent in spatial inversion asymmetry WSMs. Compared with its nonmagnetic counterpart, the magnetic state of a MWSM provides an alternative way for the modulation of topology. Spin-orbit torque (SOT), as an effective means of electrically controlling the magnetic states of ferromagnets, may be used to manipulate the topological magnetic states of MWSMs.

View Article and Find Full Text PDF

We combine numerical and analytical methods to study two-dimensional active crystals formed by permanently linked swimmers and with two distinct alignment interactions. The system admits a stationary phase with quasi-long-range translational order, as well as a moving phase with quasi-long-range active force director and velocity order. The translational order in the moving phase is significantly influenced by alignment interaction.

View Article and Find Full Text PDF

Dynamics of hydration water is essential for the function of biomacromolecules. Previous studies have demonstrated that water molecules exhibit subdiffusion on the surface of biomacromolecules; yet the microscopic mechanism remains vague. Here, by performing neutron scattering, molecular dynamics simulations, and analytic modeling on hydrated perdeuterated protein powders, we found water molecules jump randomly between trapping sites on protein surfaces, whose waiting times obey a broad distribution, resulting in subdiffusion.

View Article and Find Full Text PDF

Understanding the interplay between ordered structures and substrate curvature is an interesting problem with versatile applications, including functionalization of charged supramolecular surfaces and modern microfluidic technologies. In this work, we investigate the two-dimensional packing structures of charged particles confined on a pinched sphere. By continuously pinching the sphere, we observe cleavage of elongated scars into pleats, proliferation of disclinations, and subsequently, emergence of a depletion zone at the negatively curved waist that is completely void of particles.

View Article and Find Full Text PDF

Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory.

View Article and Find Full Text PDF

We analytically calculate the correlation potential of a test ion near a strongly charged plate inside a dilute m:-n electrolyte. We do this by calculating the electrostatic Green's function in the presence of a nonlinear background potential, the latter having been obtained using the nonlinear Poisson-Boltzmann theory. We consider the general case where the dielectric constants of the plate and the electrolyte are distinct.

View Article and Find Full Text PDF

Spin-wave devices hold great promise to be used in future information processing. Manipulation of spin-wave propagation inside the submicrometer waveguides is at the core of promoting the practical application of these devices. Just as in today's silicon-based chips, bending of the building blocks cannot be avoided in real spin-wave circuits.

View Article and Find Full Text PDF

We consider the impact of the elastomer network on the nematic structure and fluctuations in isotropic-genesis nematic elastomers, via a phenomenological model that underscores the role of network compliance. The model contains a network-mediated nonlocal interaction as well as a new kind of random field that reflects the memory of the nematic order present at network formation and also encodes local anisotropy due to localized nematogenic polymers. This model enables us to predict regimes of short-ranged oscillatory spatial correlations (thermal and glassy) in the nematic alignment.

View Article and Find Full Text PDF

We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume.

View Article and Find Full Text PDF

Recent experiments on vesicles formed from block copolymers with liquid-crystalline side chains reveal a rich variety of vesicle morphologies. The additional internal order ("structure") developed by these self-assembled block copolymer vesicles can lead to significantly deformed vesicles as a result of the delicate interplay between two-dimensional ordering and vesicle shape. The inevitable topological defects in structured vesicles of spherical topology also play an essential role in controlling the final vesicle morphology.

View Article and Find Full Text PDF

The general solution to the nonlinear Poisson-Boltzmann equation for two parallel charged plates, either inside a symmetric electrolyte, or inside a 2q:-q asymmetric electrolyte, is found in terms of Weierstrass elliptic functions. From this we derive some exact asymptotic results for the interaction between charged plates, as well as the exact form of the renormalized surface charge density.

View Article and Find Full Text PDF

The classical theory of rubber elasticity fails in the regime of large deformation. The underlying physical mechanism has been under debate for a long time. In this work, we test the recently proposed mechanism of thermal elastic fluctuations by Xing, Goldbart, and Radzihovsky (XGR) against the biaxial stress-strain data of three distinct polymer networks with very different network structures, synthesized by Urayama and Kawabata, respectively.

View Article and Find Full Text PDF

We solve the nonlinear Poisson-Boltzmann equation for two parallel and like-charged plates both inside a symmetric electrolyte, and inside a 2:1 asymmetric electrolyte, in terms of Weierstrass elliptic functions. From these solutions we derive the functional relation between the surface charge density, the plate separation, and the pressure between plates. For the one plate problem, we obtain exact expressions for the electrostatic potential and for the renormalized surface charge density, both in symmetric and in asymmetric electrolytes.

View Article and Find Full Text PDF

The transport of polypeptides through nanopores is a key process in biology and medical biotechnology. Despite its critical importance, the underlying kinetics of polypeptide translocation through protein nanopores is not yet comprehensively understood. Here, we present a simple two-barrier, one-well kinetic model for the translocation of short positively charged polypeptides through a single transmembrane protein nanopore that is equipped with negatively charged rings, simply called traps.

View Article and Find Full Text PDF

Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the structure of soft random solids is a result of the fluctuations locked-in at their synthesis, which also brings heterogeneity in their elastic properties. Vulcanization theory studies semimicroscopic models of random-solid-forming systems and applies replica field theory to deal with their quenched disorder and thermal fluctuations.

View Article and Find Full Text PDF

Smectic orders on curved substrates can be described by differential forms of rank one (1-forms), whose geometric meaning is the differential of the local phase field of density modulation. The exterior derivative of the 1-form is the local dislocation density. Elastic deformations are described by superposition of exact differential forms.

View Article and Find Full Text PDF

When a chiral isotropic elastomer is brought to the low-temperature cholesteric phase, the nematic degree of freedom tends to order and form a helix. Due to the nematoelastic coupling, this also leads to elastic deformation of the polymer network that is locally coaxial with the nematic order. However, the helical structure of nematic order is incompatible with the energetically preferred elastic deformation.

View Article and Find Full Text PDF

We study vacancy diffusion on the classical triangular-lattice dimer model, subject to the kinetic constraint that dimers can only translate, but not rotate. A single vacancy, i.e.

View Article and Find Full Text PDF

We study the organization of topological defects in a system of nematogens confined to the two-dimensional sphere (S2). We first perform Monte Carlo simulations of a fluid system of hard rods (spherocylinders) living in the tangent plane of S2. The sphere is adiabatically compressed until we reach a jammed nematic state with maximum packing density.

View Article and Find Full Text PDF

A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity.

View Article and Find Full Text PDF

The effects of thermal elastic fluctuations in rubbery materials are examined. It is shown that, due to their interplay with the incompressibility constraint, these fluctuations qualitatively modify the large-deformation stress-strain relation, compared to that of classical rubber elasticity. To leading order, this mechanism provides a simple and generic explanation for the peak structure of Mooney-Rivlin stress-strain relation and shows good agreement with experiments.

View Article and Find Full Text PDF

Motivated by recently discovered unusual properties of bulk nematic elastomers, we study a phase diagram of liquid-crystalline polymerized phantom membranes, focusing on in-plane nematic order. We predict that such membranes should generically exhibit five phases, distinguished by their conformational and in-plane orientational properties: namely, isotropic-crumpled, nematic-crumpled, isotropic-flat, nematic-flat, and nematic-tubule phases. In the nematic-tubule phase, the membrane is extended along the direction of spontaneous nematic order and is crumpled in the other.

View Article and Find Full Text PDF

The scaling of shear modulus near the gelation-vulcanization transition is explored heuristically and analytically. It is found that in a dense melt the effective chains of the infinite cluster have sizes that scale sublinearly with their contour length. Consequently, each chain contributes k(B)T to the rigidity, which leads to a shear-modulus exponent dnu.

View Article and Find Full Text PDF