Publications by authors named "Xiangjun Shang"

In this work, we developed pre-grown annealing to form β2 reconstruction sites among β or α (2 × 4) reconstruction phase to promote nucleation for high-density, size/wafer-uniform, photoluminescence (PL)-optimal InAs quantum dot (QD) growth on a large GaAs wafer. Using this, the QD density reached 580 (860) μm at a room-temperature (T) spectral FWHM of 34 (41) meV at the wafer center (and surrounding) (high-rate low-T growth). The smallest FWHM reached 23.

View Article and Find Full Text PDF

The coherent interaction of electromagnetic fields with solid-state two-level systems can yield deterministic quantum light sources for photonic quantum technologies. To date, the performance of semiconductor single-photon sources based on three-level systems is limited mainly due to a lack of high photon indistinguishability. Here we tailor the cavity-enhanced spontaneous emission from a ladder-type three-level system in a single epitaxial quantum dot through stimulated emission.

View Article and Find Full Text PDF

In this work, we develop single-mode fiber devices of an InAs/GaAs quantum dot (QD) by bonding a fiber array with large smooth facet, small core, and small numerical aperture to QDs in a distributed Bragg reflector planar cavity with vertical light extraction that prove mode overlap and efficient output for plug-and-play stable use and extensive study. Modulated Si doping as electron reservoir builds electric field and level tunnel coupling to reduce fine-structure splitting (FSS) and populate dominant XX and higher excitons XX and XXX. Epoxy package thermal stress induces light hole (lh) with various behaviors related to the donor field: lh h confined with more anisotropy shows an additional X line (its space to the traditional X lines reflects the field intensity) and larger FSS; lh h delocalized to wetting layer shows a fast h-h decay; lh h confined shows D symmetric higher excitons with slow h-h decay and more confined h to raise h-h Coulomb interaction.

View Article and Find Full Text PDF

Uniform arrays of three shapes (gauss, hat, and peak) of GaAs microlenses (MLs) by wet-etching are demonstrated, ∼200 nm spatial isolation of epitaxial single QDs embedded (λ: 890-990 nm) and broadband (Δλ∼80 nm) enhancement of their quantum light extraction are obtained, which is also suitable for telecom-band epitaxial QDs. Combined with the bottom distributed Bragg reflector, the hat-shaped ML forms a cavity and achieves the best enhancement: extraction efficiency of 26%, Purcell factor of 2 and single-photon count rate of 7×106 counts per second at the first lens; while the gauss-shaped ML shows a broader band (e.g.

View Article and Find Full Text PDF

We proposed a precise calibration process of Al GaAs/GaAs DBR micropillar cavity to match the single InAs/GaAs quantum dot (QD) exciton emission and achieve cavity mode resonance and a great enhancement of QD photoluminescence (PL) intensity. Light-matter interaction of single QD in DBR micropillar cavity (Q ∼ 3800) under weak coupling regime was investigated by temperature-tuned PL spectra; a pronounced enhancement (14.6-fold) of QD exciton emission was observed on resonance.

View Article and Find Full Text PDF

A pronounced high count rate of single-photon emission at the wavelength of 1.3 μm that is capable of fiber-based quantum communication from InAs/GaAs bilayer quantum dots coupled with a micropillar (diameter ~3 μm) cavity of distributed Bragg reflectors was investigated, whose photon extraction efficiency has achieved 3.3%.

View Article and Find Full Text PDF

Nanowire quantum dots (NW-QDs) can be used for future compact and efficient optoelectronic devices. Many efforts have been made to control the QD states by inserting the QDs in doped structures and applying an electric field in a nanowire system. In this paper, we use down-conversion and up-conversion photoluminescence excitations to explore the optical and electronic properties of single quantum dots in GaAs/AlGaAs core-shell nanowires.

View Article and Find Full Text PDF

Single-photon emission in the telecommunication wavelength band is realized with self-assembled strain-coupled bilayer InAs quantum dots (QDs) embedded in a planar microcavity on GaAs substrate. Low-density large QDs in the upper layer active for ~1.3 μm emission are fabricated by precisely controlling the indium deposition amount and applying a gradient indium flux in both QD layers.

View Article and Find Full Text PDF

The realization of fiber-output single photon sources is necessary for quantum photonics. Here we present in situ probing and integration of single self-assembled quantum dots (QDs)-in-nanowires. Single self-assembled AlGaAs QDs were synthesized in GaAs/AlGaAs core-shell nanowires by molecular beam epitaxy and characterized by optical excitation in both micro-PL and fiber-integrating set-up.

View Article and Find Full Text PDF

Fabrication of advanced artificial nanomaterials is a long-term pursuit to fulfill the promises of nanomaterials and it is of utter importance to manipulate materials at nanoscale to meet urgent demands of nanostructures with designed properties. Herein, we demonstrate the morphological tailoring of self-assembled nanostructures on faceted GaAs nanowires (NWs). The NWs are deposited on different kinds of substrates.

View Article and Find Full Text PDF

Two types of quantum nanostructures based on self-assembled GaAs quantumdots embedded into GaAs/AlGaAs hexagonal nanowire systems are reported, opening a new avenue to the fabrication of highly efficient single-photon sources, as well as the design of novel quantum optics experiments and robust quantum optoelectronic devices operating at higher temperature, which are required for practical quantum photonics applications.

View Article and Find Full Text PDF

Single nanostructures embedded within nanowires (NWs) represent one of the most promising technologies for applications in quantum photonics. However, fabrication imperfections and etching-induced defects are inevitable for top-down fabrications, whereas self-assembly bottom-up approaches cannot avoid the difficulties of its stochastic nature and are limited to restricted heterogeneous material systems. Here we demonstrate the versatile self-assembly of single "square" quantum rings (QR) on the sidewalls of gold-free GaAs NWs for the first time.

View Article and Find Full Text PDF

We report a new type of single InAs quantum dot (QD) embedded at the junction of gold-free branched GaAs/AlGaAs nanowire (NW) grown on silicon substrate. The photoluminescence intensity of such QD is ~20 times stronger than that from randomly distributed QD grown on the facet of straight NW. Sharp excitonic emission is observed at 4.

View Article and Find Full Text PDF

A method to improve the growth repeatability of low-density InAs/GaAs self-assembled quantum dots by molecular beam epitaxy is reported. A sacrificed InAs layer was deposited firstly to determine in situ the accurate parameters of two- to three-dimensional transitions by observation of reflection high-energy electron diffraction patterns, and then the InAs layer annealed immediately before the growth of the low-density InAs quantum dots (QDs). It is confirmed by micro-photoluminescence that control repeatability of low-density QD growth is improved averagely to about 80% which is much higher than that of the QD samples without using a sacrificed InAs layer.

View Article and Find Full Text PDF