Publications by authors named "Xiangji Liao"

The circularly polarized organic light-emitting diodes (CP-OLEDs) demonstrate promising application in 3D display due to the direct generation of circularly polarized electroluminescence (CPEL). But the chiral luminescence materials face challenges as intricated synthetic route, enantiomeric separation, etc. Herein, fresh CP-OLEDs are designed based on chiral hole transport material instead of chiral emitters.

View Article and Find Full Text PDF

Chiral boron/nitrogen doped multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters are promising for highly efficient and color-pure circularly polarized organic light-emitting diodes (CP-OLEDs). Herein, we report two pairs of MR-TADF materials (Czp-tBuCzB, Czp-POAB) based on planar chiral paracyclophane with photoluminescence quantum yields of up to 98 %. The enantiomers showed symmetric circularly polarized photoluminescence spectra with dissymmetry factors |g | of up to 1.

View Article and Find Full Text PDF

Despite significant progress on the design and synthesis of covalent organic frameworks (COFs), precise control over microstructures of such materials remains challenging. Herein, two chiral COFs with well-defined one-handed double-helical nanofibrous morphologies were constructed via an unprecedented template-free method, capitalizing on the diastereoselective formation of aminal linkages. Detailed time-dependent experiments reveal the spontaneous transformation of initial rod-like aggregates into the double-helical microstructures.

View Article and Find Full Text PDF

Herein, we report the structures of chiral-at-cage carborane derivatives bearing carbazole chromophores that emit circularly polarized luminescence (CPL) and aggregation-induced electrochemiluminescence (AIECL). By adjusting the substituent positions on the carborane derivatives, two chiral luminescent molecules, Cb1 and Cb2, with different properties were obtained. The photoluminescence dissymmetry factors |g | of both (R/S)-Cb1 and (R/S)-Cb2 enantiomers in neat films were as high as 6.

View Article and Find Full Text PDF

The realization of luminescent materials with narrowband and circularly polarized luminescence (CPL) is of great significance for the development of future optical and photonic devices. Herein, through a steric-hindrance-assisted dual-core strategy, two pairs of chiral dual-core multiple resonance thermally activated delayed fluorescence (MR-TADF) materials (R/S-DOBN and R/S-DOBNT) are directly constructed by the bonding of two organoboron MR-TADF monocores (SOBN and SOBNT) with carbazole/3,6-di-tert-butyl-9H-carbazole and phenol derivative as donors, realizing obvious CPL and narrowband emissions. Furthermore, the dual-core effect in the prepared R/S-DOBN and R/S-DOBNT increases the transition oscillator strength two times more than that of a monocore structure, while maintaining the ultrapure blue emissions peaking at 453 and 459 nm with a narrower full-width at half-maximum of 21 nm through reorganization energy reduction.

View Article and Find Full Text PDF

A narrowband blue CP-TADF emitter with a rigid hetero-helicene structure (QAO-PhCz) was synthesized and characterized. QAO-PhCz exhibits good electroluminescence performance (EQE = 14.0%) and narrow FWHM.

View Article and Find Full Text PDF

Click chemistry focuses on the development of highly selective reactions using simple precursors for the exquisite synthesis of molecules. Undisputedly, the Cu -catalyzed azide-alkyne cycloaddition (CuAAC) is one of the most valuable examples of click chemistry, but it suffers from some limitations as it requires additional reducing agents and ligands as well as cytotoxic copper. Here, we demonstrate a novel strategy for the azide-alkyne cycloaddition reaction that involves a photoredox electron-transfer radical mechanism instead of the traditional metal-catalyzed coordination process.

View Article and Find Full Text PDF