Foodborne illness caused by Salmonella spp. is one of the most prevalent public health problems globally, which have brought immeasurable economic burden and social impact to countries around the world. Neither current nucleic acid amplification detection method nor standard culture method (2-3 days) are suitable for field detection in areas with a heavy burden of Salmonella spp.
View Article and Find Full Text PDFElectrical stimulation (ES) has shown beneficial effects in repairing injured tissues. However, current ES techniques that use tissue-traversing leads and bulky external power suppliers have significant limitations in translational medicine. Hence, exploring noninvasive in vivo ES to provide controllable electrical cues in tissue engineering is an imminent necessity.
View Article and Find Full Text PDFImplantable neural stimulation devices are becoming prevalent in bioelectronic medicine for the precise treatment of various clinical diseases. Nevertheless, the limited lifespan and buckling size of the implanted devices remain significant obstacles for chronic clinical application. In this study, we developed an ultrasound-driven battery-free neurostimulator based on a high-performance mini-sized nanogenerator and demonstrated its successful application for the deep-brain-stimulation (DBS) therapy of Parkinson's disease in a rat model.
View Article and Find Full Text PDFIn recent years, meat adulteration safety incidents have occurred frequently, triggering widespread attention and discussion. Although there are a variety of meat quality identification methods, conventional assays require high standards for personnel and experimental conditions and are not suitable for on-site testing. Therefore, there is an urgent need for a rapid, sensitive, high specificity and high sensitivity on-site meat detection method.
View Article and Find Full Text PDFCell Commun Signal
September 2023
Background: Apoptotic vesicles are extracellular vesicles generated by apoptotic cells that were previously regarded as containing waste or harmful substances but are now thought to play an important role in signal transduction and homeostasis regulation.
Methods: In the present review, we reviewed many articles published over the past decades on the subtypes and formation of apoptotic vesicles and the existing applications of these vesicles.
Results: Apoptotic bodies were once regarded as vesicles released by apoptotic cells, however, apoptotic vesicles are now regarded to include apoptotic bodies, apoptotic microvesicles and apoptotic exosomes, which exhibit variation in terms of biogenesis, sizes and properties.
Background: Most bone-related injuries to grassroots troops are caused by training or accidental injuries. To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops, it is imperative to develop new strategies and scaffolds to promote bone regeneration.
Methods: In this study, a porous piezoelectric hydrogel bone scaffold was fabricated by incorporating polydopamine (PDA)-modified ceramic hydroxyapatite (PDA-hydroxyapatite, PHA) and PDA-modified barium titanate (PDA-BaTiO, PBT) nanoparticles into a chitosan/gelatin (Cs/Gel) matrix.
Outer membrane vesicles (OMVs) are spherical, bilayered, and nanosized membrane vesicles that are secreted from gram-negative bacteria. OMVs play a pivotal role in delivering lipopolysaccharide, proteins and other virulence factors to target cells. Multiple studies have found that OMVs participate in various inflammatory diseases, including periodontal disease, gastrointestinal inflammation, pulmonary inflammation and sepsis, by triggering pattern recognition receptors, activating inflammasomes and inducing mitochondrial dysfunction.
View Article and Find Full Text PDFHuman periodontal ligament stem cells (hPDLSCs) are promising cells for dental and periodontal regeneration. This study aimed to develop novel alginate-fibrin fibers that encapsulates hPDLSCs and metformin, to investigate the effect of metformin on the osteogenic differentiation of hPDLSCs, and to determine the regulatory role of the Shh/Gli1 signaling pathway in the metformin-induced osteogenic differentiation of hPDLSCs for the first time. CCK8 assay was used to evaluate hPDLSCs.
View Article and Find Full Text PDFtea, a variety of oolong tea, is produced in Chaozhou, Guangdong Province, China, and is characterized by numerous hybridizations and polyploidization. To assess the genetic diversity and phylogenetic relationships among tea and other oolong teas, an integrated circular chloroplast genome was constructed for thirty species of tea from Chaozhou. The genome of tea is a circular molecule of 157,041-157,137 bp, with a pair of inverted repeats (26,072-26,610 bp each) separated by a large single copy (86,615-86,658 bp) and small single copy (18,264-18,284 bp).
View Article and Find Full Text PDFMicroalgae lipid triacylglycerol is considered as a promising feedstock for national production of biofuels. A hotspot issue in the biodiesel study is to increase TAG content and productivity of microalgae. Precursor RNA processing protein (Prp19), which is the core component of eukaryotic RNA splice NTC (nineteen associated complex), plays important roles in the mRNA maturation process in eukaryotic cells, has a variety of functions in cell development, and is even directly involved in the biosynthesis of oil bodies in mouse.
View Article and Find Full Text PDFThis study aimed to investigate nutrition in climbing perch which is an important nutritious economic freshwater fish in Asia and compare with (crucian carp). Three kinds of tissues, including muscle, livers, and eggs, were isolated, respectively. Physicochemical properties including moisture, ash, protein, amino acids, fat, vitamins, and calcium contents in those tissues were determined.
View Article and Find Full Text PDFSingle-cell RNA-sequencing (scRNA-seq) is becoming a powerful tool to investigate monoallelic expression (MAE) in various developmental and pathological processes. However, our knowledge of MAE during hematopoiesis and leukemogenesis is limited. In this study, we conducted a systematic interrogation of MAEs in bone marrow mononuclear cells (BMMCs) at single-cell resolution to construct a MAE atlas of BMMCs.
View Article and Find Full Text PDFMicroalgae-based biodiesel production has many advantages over crude oil extraction and refinement, thus attracting more and more concern. Protein ubiquitination is a crucial mechanism in eukaryotes to regulate physiological responses and cell development, which is highly related to algal biodiesel production. Cullins as the molecular base of cullin-RING E3 ubiquitin ligases (CRLs), which are the largest known class of ubiquitin ligases, control the life activities of eukaryotic cells.
View Article and Find Full Text PDFAn innovative g-CN catalyzed surface-initiated photo atom transfer radical polymerization (SI-photoATRP) has been developed to construct MEDSAH zwitterionic polymer brushes on PVA hydrogel surface. g-CN catalyzed SI-photoATRP is temporal and spatial control. As a heterogeneous reaction system, it can solve the catalyst residues problem.
View Article and Find Full Text PDFDetermining the animal source in meat and meat products is crucial to prevent meat adulteration and fraud. Conventional methods require considerable operator skills, expensive instruments and are unable to provide fast mobile on-site detection systems to detect contamination of meat products. We developed a visual method based on recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) to identify beef (Bos taurus), sheep (Ovis aries), pork (Sus scrofa), duck (Anas platyrhynchos) and chicken (Gallus gallus).
View Article and Find Full Text PDFBackground: Although glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited disorder in the Chinese population, there is scarce evidence regarding the epidemiology, evolutionary origin, and malaria-induced positive selection effects of G6PD-deficient alleles in various Chinese ethnic populations.
Methods: We performed a large population-based screening (n = 15,690) to examine the impact of selection on human nucleotide diversity and to infer the evolutionary history of the most common deficiency alleles in Chinese populations.
Results: The frequencies of G6PD deficiency ranged from 0% to 11.
Field investigations have revealed the ability of the climbing perch to survive in highly contaminated water bodies. The aryl hydrocarbon receptor (AhR) pathway is vital in mediating the toxicity of aromatic hydrocarbon contaminants, and genotypic variation in the AhR can confer resistance to these contaminants. Thus, we characterized the AhR pathway in in order to understand the mechanism(s) underlying the resistance of this species to contaminants and to broaden current knowledge on teleost AhR.
View Article and Find Full Text PDFIn recent decades, crude recycling of electronic waste (e-waste) has caused serious pollution and threatened wild organisms in certain regions. It is therefore valuable to investigate the pollution-induced toxic effects in situ using native fish species. Unlike the death or decline observed in other species, Anabas testudineus can better adapt to severe e-waste pollution.
View Article and Find Full Text PDFManganese superoxide dismutase (MnSOD) functions as a tumor suppressor; however, once tumorigenesis occurs, clinical data suggest MnSOD levels correlate with more aggressive human tumors, implying a potential dual function of MnSOD in the regulation of metabolism. Here we show, using in vitro transformation and xenograft growth assays that the MnSOD-K68 acetylation (Ac) mimic mutant (MnSOD) functions as a tumor promoter. Interestingly, in various breast cancer and primary cell types the expression of MnSOD is accompanied with a change of MnSOD's stoichiometry from a known homotetramer complex to a monomeric form.
View Article and Find Full Text PDFIt is becoming increasingly clear that mitochondria drive cellular functions and in vivo phenotypes by directing the production rate and abundance of metabolites that are proposed to function as signaling molecules (Chandel 2015; Selak et al. 2005; Etchegaray and Mostoslavsky 2016). Many of these metabolites are intermediates that make up cellular metabolism, part of which occur in mitochondria (i.
View Article and Find Full Text PDFThe isocitrate dehydrogenase IDH2 produces α-ketoglutarate by oxidizing isocitrate, linking glucose metabolism to oxidative phosphorylation. In this study, we report that loss of SIRT3 increases acetylation of IDH2 at lysine 413 (IDH2-K413-Ac), thereby decreasing its enzymatic activity by reducing IDH2 dimer formation. Expressing a genetic acetylation mimetic IDH2 mutant (IDH2) in cancer cells decreased IDH2 dimerization and enzymatic activity and increased cellular reactive oxygen species and glycolysis, suggesting a shift in mitochondrial metabolism.
View Article and Find Full Text PDFAims: Sirtuins connect energy generation and metabolic stress to the cellular acetylome. Currently, only the mitochondrial sirtuins (SIRT3-5) and SIRT1 have been shown to direct mitochondrial function; however, Aims: NAD-dependent protein deacetylase sirtuin-2 (SIRT2), the primary cytoplasmic sirtuin, is not yet reported to associate with mitochondria.
Results: This study revealed a novel physiological function of SIRT2: the regulation of mitochondrial function.
Sirtuins participate in sensing nutrient availability and directing metabolic activity to match energy needs with energy production and consumption. However, the pivotal targets for sirtuins in cancer are mainly unknown. In this study, we identify the M2 isoform of pyruvate kinase (PKM2) as a critical target of the sirtuin SIRT2 implicated in cancer.
View Article and Find Full Text PDF