Halogenated volatile organic compounds (HVOCs) pose significant bioaccumulative and toxicological risks, necessitating effective strategies for their removal. Here, we show, through a computational study employing density functional theory and coupled cluster methods, the detailed mechanism and kinetic properties of Cl-initiated degradation reactions of 2-chloropropane (2-CP, (CH)CHCl) and 2-methylpropanoyl halide ((CH)CHCOX, X = Cl, Br, F). The reaction rate constants of all the channels were calculated by the canonical variational transition state theory (CVT) with the correction of the small curvature tunneling effect (SCT) at 200-1000 K.
View Article and Find Full Text PDFFor the fixed-time nonlinear system control problem, a new fixed-time stability (FxTS) theorem and an integral sliding mode surface are proposed to balance the control speed and energy consumption. We discuss the existing fixed time inequalities and set up less conservative inequalities to study the FxTS theorem. The new inequality differs from other existing inequalities in that the parameter settings are more flexible.
View Article and Find Full Text PDFThe fate of 2-nitrobenzaldehyde (2-NBA) is of interest in atmospheric chemistry as it is a semi-volatile organic compound with high photosensitivity. This study presents a quantum chemical study of the gas-phase reactions of 2-NBA photo-excitation and OH-oxidation in the absence and presence of small TiO clusters. To further understand the unknown photolysis mechanism, the photo-reaction pathways of ground singlet state and the lying excited triplet state of 2-NBA were investigated including the initial and subsequent reactions of proton transfer, direct CO, NO, and HCO elimination routes in the presence of O and NO.
View Article and Find Full Text PDFIn order to avoid slackening of differential housing and gear joined by bolts, the laser-welding process is proposed in this paper, and the strength of a connecting joint was estimated by numerical analysis with consideration of welding residual stress. The process parameters of laser welding for dissimilar materials QT600 cast iron and 20MnCr5 structural alloy steel were introduced, and chemical composition analysis and microstructure analysis were conducted on the welded joints. The finite element model of laser-welded differential housing and gear was established to obtain the welding residual stress by applying a moving heat source.
View Article and Find Full Text PDFThe degradation and transformation of iodinated alkanes are crucial in the iodine chemical cycle in the marine boundary layer. In this study, MP2 and CCSD(T) methods were adopted to study the atmospheric transformation mechanism and degradation kinetic properties of CH I and CH CH I mediated by ⋅OH radical. The results show that there are three reaction mechanisms including H-abstraction, I-substitution and I-abstraction.
View Article and Find Full Text PDFHalogenated phenols are highly toxic chemicals with serious health risks, and the removal of these persistent environmental pollutants remains a challenge. Based on quantum chemistry calculations, the homogeneous/heterogeneous degradation mechanism and kinetics of CXOH (X = F, Cl, and Br) initiated by ˙OH radicals in the gas phase and TiO cluster surfaces are investigated in this work. Four ˙OH-addition and one proton-coupled electron-transfer (PCET) reaction channels for each halogenated phenol were found and the ˙OH-addition channels were more favorable than the PCET pathway without TiO clusters.
View Article and Find Full Text PDFBased on the statics and quasi-statics analysis methods, the thermal deformation calculation model of a deep-groove ball bearing was constructed for the helical gear transmission system of a high speed electric drive, and the radial and axial bearing stiffness values of the bearing were calculated under the thermal deformation in this study. The obtained radial and axial stiffness values were introduced into the established dynamics model of helical gear system, and the influence of changed bearing stiffness, resulting from the thermal deformation, on the nonlinear dynamic characteristics of gear pair was analyzed using the Runge-Kutta method. The results show that the axial and radial deformations of bearing occur due to the increase of working speed and temperature, in which the axial stiffness of bearing is improved but the radial stiffness is reduced.
View Article and Find Full Text PDFNickel-rich layered oxides, as the most promising commercial cathode material for high-energy density lithium-ion batteries, experience significant surface structural instabilities that lead to severe capacity deterioration and poor thermal stability. To address these issues, radially aligned grains and surface LiNiWO-like heterostructures are designed and obtained with a simple tungsten modification strategy in the LiNiCoMnO cathode. The formation of radially aligned grains, manipulated by the WO modifier during synthesis, provides a fast Li diffusion channel during the charge/discharge process.
View Article and Find Full Text PDFZhongguo Zhong Xi Yi Jie He Za Zhi
March 2005