Osteoporotic femoral neck fractures (OFNFs) pose a significant orthopedic challenge in the elderly population, accounting for up to 40% of all osteoporotic fractures and leading to considerable health deterioration and increased mortality. In addressing the critical need for early identification of osteoporosis through routine screening of femoral neck bone mineral density (FNBMD), this study developed a user-friendly prediction model aimed at men aged 50 years and older, a demographic often overlooked in osteoporosis screening. Utilizing data from the National Health and Nutrition Examination Survey (NHANES), the study involved outlier detection and handling, missing value imputation via the K nearest neighbor (KNN) algorithm, and data normalization and encoding.
View Article and Find Full Text PDFBackground: Rapid identification of high-risk polytrauma patients is crucial for early intervention and improved outcomes. This study aimed to develop and validate machine learning models for predicting 72 h mortality in adult polytrauma patients using readily available clinical parameters.
Methods: A retrospective analysis was conducted on polytrauma patients from the Dryad database and our institution.
Background: Translating aging rejuvenation strategies into clinical practice has the potential to address the unmet needs of the global aging population. However, to successfully do so requires precise quantification of aging and its reversal in a way that encompasses the complexity and variation of aging.
Methods: Here, in a cohort of 113 healthy women, tiled in age from young to old, we identified a repertoire of known and previously unknown markers associated with age based on multimodal measurements, including transcripts, proteins, metabolites, microbes, and clinical laboratory values, based on which an integrative aging clock and a suite of customized aging clocks were developed.