Construction of diatomic rotors, which is crucial for artificial nanomachines, remains challenging due to surface constraints and limited chemical design. Here we report the construction of diatomic Cr-Cs and Fe-Cs rotors where a Cr or Fe atom switches around a Cs atom at the Sb surface of the newly discovered kagome superconductor CsVSb. The switching rate is controlled by the bias voltage between the rotor and scanning tunneling microscope (STM) tip.
View Article and Find Full Text PDFAtomically precise defect engineering is essential to manipulate the properties of emerging topological quantum materials for practical quantum applications. However, this remains challenging due to the obstacles in modifying the typically complex crystal lattice with atomic precision. Here, we report the atomically precise engineering of the vacancy-localized spin-orbit polarons in a kagome magnetic Weyl semimetal CoSnS, using scanning tunneling microscope.
View Article and Find Full Text PDFSci Bull (Beijing)
April 2024
Vortices and bound states offer an effective means of comprehending the electronic properties of superconductors. Recently, surface-dependent vortex core states have been observed in the newly discovered kagome superconductors CsVSb. Although the spatial distribution of the sharp zero energy conductance peak appears similar to Majorana bound states arising from the superconducting Dirac surface states, its origin remains elusive.
View Article and Find Full Text PDFLandau quantization associated with the quantized cyclotron motion of electrons under magnetic field provides the effective way to investigate topologically protected quantum states with entangled degrees of freedom and multiple quantum numbers. Here we report the cascade of Landau quantization in a strained type-II Dirac semimetal NiTe with spectroscopic-imaging scanning tunneling microscopy. The uniform-height surfaces exhibit single-sequence Landau levels (LLs) at a magnetic field originating from the quantization of topological surface state (TSS) across the Fermi level.
View Article and Find Full Text PDF