The uncalibrated brain-computer interface (BCI) system based on steady-state visual evoked potential (SSVEP) can omit the training process and is closer to the practical application. Filter bank canonical correlation analysis (FBCCA), as a classical approach of uncalibrated SSVEP-based BCI, extracts the fundamental and harmonic ingredients through filter bank decomposition. Nevertheless, this method fails to fully leverage the temporal feature of the signal.
View Article and Find Full Text PDFMultivariate synchronization index (MSI), as an effective recognition algorithm for steady-state visual evoked potential (SSVEP) brain-computer interface (BCI), can accurately decode target frequencies without training. To further consider temporal features or extract harmonic components, extended MSI (EMSI), temporally local MSI (TMSI), and filter bank MSI (FBMSI) have been proposed. However, the promotion effects of the above three strategies on MSI have not been compared in detail.
View Article and Find Full Text PDFCogn Neurodyn
February 2024
The target recognition algorithm based on canonical correlation analysis (CCA) has been widely used in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces. To reduce visual fatigue and improve the information transfer rate (ITR), how to improve the accuracy of algorithms within a short time window has become one of the main problems at present. There were filter bank CCA (FBCCA), individual template CCA (ITCCA), and temporally local CCA (TCCA), which improve the CCA algorithm from different aspects.
View Article and Find Full Text PDF