Design and synthesis of highly active and robust bifunctional cathode catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are of vital significance for practical applications of lithium-oxygen (Li-O) batteries. Herein, a built-in electric field (BIEF) strategy is reported to fabricate MnTe/MnO heterostructures with a large work function difference (ΔΦ) as a bifunctional cathode catalyst in Li-O batteries. The MnTe/MnO heterostructures with nanosheets and microporous structures result in an abundance of exposed active sites and facilitate mass transfer.
View Article and Find Full Text PDFLithium-rich layered oxides (LLOs) are concerned as promising cathode materials for next-generation lithium-ion batteries due to their high reversible capacities (larger than 250 mA h g ). However, LLOs suffer from critical drawbacks, such as irreversible oxygen release, structural degradation, and poor reaction kinetics, which hinder their commercialization. Herein, the local electronic structure is tuned to improve the capacity energy density retention and rate performance of LLOs via gradient Ta doping.
View Article and Find Full Text PDFCobalt phosphide (CoP) is considered as one of the most promising candidates for anode in lithium-ion batteries (LIBs) owing to its low-cost, abundant availability, and high theoretical capacity. However, problems of low conductivity, heavy aggregation, and volume change of CoP, hinder its practical applicability. In this study, a binder-free electrode is successfully prepared by growing CoP nanosheets arrays directly on a carbon cloth (CC) via a facile one-step electrodeposition followed by an in situ phosphorization strategy.
View Article and Find Full Text PDFLithium-sulfur batteries are considered the most promising next-generation energy storage devices. However, problems like sluggish reaction kinetics and severe shuttle effect need to be solved before the commercialization of Li-S batteries. Here, we successfully prepared ZnO quantum dot-modified reduced graphene oxide (rGO@ZnO QDs), and first introduced it into Li-S cathodes (rGO@ZnO QDs/S).
View Article and Find Full Text PDFA novel and simple approach to preparing hierarchical zinc oxide/reduced graphene oxide (ZnO/RGO@RGO) composite is demonstrated using few-layered graphene oxide (GO) and metal zinc as starting materials following combined processes, including in-situ metal zinc reduction and catalyzed GO deoxygenation. Metal zinc can directly reduce GO sheets in aqueous GO suspension at room temperature to obtain a porous composite precursor (ZnO/RGO) with ZnO nanoparticles anchored on the RGO sheets. Then another RGO protecting layer is directly coated on the ZnO/RGO precursor to obtain the hierarchical ZnO/RGO@RGO composite.
View Article and Find Full Text PDFNi₃S₂ nanocrystals wrapped by thin carbon layer and anchored on the sheets of reduced graphene oxide (Ni₃S₂@C/RGO) have been synthesized by a spray-coagulation assisted hydrothermal method and combined with a calcination process. Cellulose, dissolved in Thiourea/NaOH aqueous solution is chosen as carbon sources and mixed with graphene oxide via a spray-coagulation method using graphene suspension as coagulation bath. The resulted cellulose/graphene suspension is utilized as solvent for dissolving of Ni(NO₃)₂ and then used as raw materials for hydrothermal preparation of the Ni₃S₂@C/RGO composites.
View Article and Find Full Text PDF