Publications by authors named "Xiangfeng Huang"

Energy intensity (EI) prediction in wastewater treatment plants (WWTPs) suffers from inaccuracy and non-interpretability due to poor data quality, complex mechanisms and various confounding variables. In this study, the novel hybrid variable cross layer-based machine learning (VCL-ML) model was devised, which generates new knowledge with monitoring indicators (e.g.

View Article and Find Full Text PDF

Nanoemulsions play a crucial role in various industries. However, their application often results in hazardous waste, posing significant risks to human health and the environment. Effective management and separation of waste nanoemulsions requires special attention and effort.

View Article and Find Full Text PDF

Mitigation of nitrous oxide (NO) emissions in full-scale wastewater treatment plant (WWTP) has become an irreversible trend to adapt the climate change. Monitoring of NO emissions plays a fundamental role in understanding and mitigating NO emissions. This paper provides a comprehensive review of direct and indirect NO monitoring methods.

View Article and Find Full Text PDF
Article Synopsis
  • - In coastal regions facing climate change, wastewater treatment plants (WWTPs) struggle with unstable effluent quality and carbon emissions due to sudden rainstorms and typhoons, requiring a new evaluation method for resilience to these hydraulic shocks.
  • - A study analyzing data from a WWTP in southeast China found that the anaerobic-anoxic-oxic-membrane bioreactor (A/O-MBR) process has a significantly lower gray water footprint but higher energy and carbon footprints compared to the traditional A/O process.
  • - The findings indicate that the A/O-MBR process is about 5.5 times more resistant to hydraulic shocks, suggesting it is more effective for stable operations in environments prone to extreme weather, providing valuable insights for future
View Article and Find Full Text PDF

The extensive use of antidiabetic drugs (ADDs) and their detection in high concentrations in the environment have been extensively documented. However, the mechanism of ADDs dissipation in aquatic environments is still not well understood. This study thoroughly investigates the dissipation behavior of ADDs and the underlying mechanisms in the aerobic activated sludge system.

View Article and Find Full Text PDF

There is a lack of knowledge on the biodegradation mechanisms of benzene and benzo [a]pyrene (BaP), representative compounds of polycyclic aromatic hydrocarbons (PAHs), and benzene, toluene, ethylbenzene, and xylene (BTEX), under individually and mixed contaminated soils. Therefore, a set of microcosm experiments were conducted to explore the influence of benzene and BaP on biodegradation under individual and mixed contaminated condition, and their subsequent influence on native microbial consortium. The results revealed that the total mass loss of benzene was 56.

View Article and Find Full Text PDF

Thoroughly exploring carbon emissions within Urban Rail Transit (URT) systems is crucial for effectively reducing emissions while satisfying increasing energy demands. This study evaluated the spatiotemporal characteristics of carbon emissions in China's URT sector. Tapio decoupling and the Logarithmic Mean Divisia Index, used to scrutinize decoupling states and identify principal contributing factors, respectively, revealed the following: (1) Total emissions increased by 217 %, with significant spatiotemporal heterogeneity from 2015 to 2022.

View Article and Find Full Text PDF
Article Synopsis
  • Polycyclic aromatic hydrocarbons (PAHs) and BTEX compounds, which include benzene, toluene, ethylbenzene, and xylene, are common toxic contaminants found at industrial sites, prompting research into their safe biodegradation.
  • An experiment investigated how elevated temperatures (15 to 45°C) affect microbial diversity and the ability to biodegrade benzene and benzo[a]pyrene (BaP) in contaminated soil.
  • Results indicated that higher temperatures significantly increased microbial diversity and enhanced the specific microorganisms necessary for degradation, while also indirectly influencing soil properties such as pH and moisture that further aided biodegradation.
View Article and Find Full Text PDF

Antibiotic resistance genes (ARGs) can be easily promoted by antibiotics, however, the structural effects of antibiotics on the proliferation of ARGs dynamic and the associated mechanisms remain obscure in, especially, activated sludge sequencing batch reactors. In the present study, the effects of 9 sulfonamides (SAs) with different structures on the proliferation dynamic of sulfonamide resistance genes (Suls) in the activated sludge sequencing batch reactors and the corresponding mechanisms were determined (30 days), and the results showed that the largest proliferation value (∆A) of Suls dynamic for SAs (sulfachloropyridazine) was approximately 2.9 times than that of the smallest one (sulfadiazine).

View Article and Find Full Text PDF

The effects of antibiotics on the proliferation of antibiotic resistant genes (ARGs) in WWTPs have drawn great attention in recent years. The effects of antibiotics on ARGs in the enhanced biological phosphorus removal (EBPR) system and its mechanisms, however, are still not well understood. In this study, EBPR systems were constructed using activated sludge to investigate the effects of ten commonly detected antibiotics in the environment on the proliferation of ARGs and the mechanisms involved.

View Article and Find Full Text PDF

Membrane separation technology has significant advantages for treating oil-in-water emulsions. Understanding the evolution of oil droplets could reveal the interfacial and colloidal interactions, facilitate the design of advanced membranes, and improve the separation performances. This review on the characteristic behavior and evolution of oil droplets focuses on the advanced analytical techniques, and the subsequent fouling as well as demulsification effects during membrane separation.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) are a significant anthropogenic source of greenhouse gas (GHG), but the quantitative assessment of GHG emissions from WWTPs in vulnerable water areas under stricter discharge limits remains unclear. Herein, depending on a case WWTP in southern China, we investigated the impacts of discharge standard improvement and key drivers of GHG emissions using daily operating data. We demonstrated that the stricter discharge limits increased the total GHG emission intensity by 18.

View Article and Find Full Text PDF

Surfactant foam (SF) can be used to remediate petroleum-contaminated soil because of its easy transfer to inhomogeneous and low-permeability formations. Nanoparticles (NPs) not only stabilize SF under extreme conditions but also impart various functions, aiding the removal of petroleum contaminants. This review discusses the stabilization mechanisms of nanoparticle-stabilized SF (NP-SF) as well as the effects of NP size, chargeability, wettability, and NP-to-surfactant ratio on foam stability.

View Article and Find Full Text PDF

Centralized sludge treatment plants (CSTPs) are implicated as strong hotspots of antibiotic resistance genes (ARGs). However, the knowledge gap on the fate of intracellular and extracellular ARGs (iARGs and eARGs), and the functionality of resistant hosts limit risk assessment and management of CSTP resistome. Here, the flow of iARGs and eARGs across treatment units and analyses of ARG hosts were systematically explored in three full-scale CSTPs using quantitative metagenomic approaches.

View Article and Find Full Text PDF

Agricultural biochar and arbuscular mycorrhizal fungi were used to promote the growth of Phragmites in the structural damaged and nutritional imbalanced littoral zone soils. Wheat straw biochar played a significant role in improving soil porosity and supplementing available phosphorus to 79.20 ± 3.

View Article and Find Full Text PDF

Non-aqueous phase liquids (NAPLs) pose a serious risk to the soil-groundwater environment. Coupling surfactants with in situ chemical oxidation (ISCO) technology is a promising strategy, which is attributed to the enhanced desorption and solubilization efficiency of NAPL contaminants. However, the complex interactions among surfactants, oxidation systems, and NAPL contaminants have not been fully revealed.

View Article and Find Full Text PDF

The separation of ultrafine oil droplets from wasted nanoemulsions stabilized with high concentration of surfactants is precondition for oil reuse and the safe discharge of effluent. However, the double barriers of the interfacial film and network structures formed by surfactants in nanoemulsions significantly impede the oil-water separation. To destroy these surfactant protective layers, we proposed a newly-developed polyethyleneimine micelle template approach to achieve simultaneous surface charge manipulation and morphology transformation of magnetic nanospheres to magnetic nanorods.

View Article and Find Full Text PDF

To promote the colonization of Phragmites in Cd polluted, nutrient deprived and structural damaged soil, the combined remediation using chemical and microbial modifiers were carried out in potting experiments. The co-application of Diversispora versiformis and sodium bentonite significantly improved the soil structure and phosphorus utilization of the plant, while decreasing the content of cadmium bound by diethylenetriaminepentaacetic acid by 77.72%.

View Article and Find Full Text PDF

Magnetic particles were coupled with a flocculant to enhance the demulsification and separation of waste cutting emulsions. The optimal magnetic particle size and critical magnetic field conditions were investigated to achieve large-scale engineering application of magnetic demulsification separation for waste cutting emulsion treatment. The micro-scale magnetic particles were found to show comparable effects to nano-scale magnetic particles on enhancing the demulsification and separation of cutting emulsions, which are beneficial for broadening the selectivity of low-cost magnetic particles.

View Article and Find Full Text PDF

Nitrogen pollution in water bodies is a serious environmental issue which is commonly treated by various methods such as heterotrophic denitrification. In particular, solid carbon source (SCS)-based denitrification has attracted widespread research interest due to its gradual carbon release, ease of management, and long-term operation. This paper reviews the types and properties of SCSs for different target water bodies.

View Article and Find Full Text PDF

Oily sludge is widely produced in the processes of petroleum exploitation, storage, transportation, and refining, and becomes more stable during aging. The interfacial stability of aging oily sludge hinders the recovery and disposal of oil resources. This review summarizes the interfacial film stability of aging oily sludge, which occurs through the formation of viscoelastic and rigid bilayer interfacial films between heavy components (asphaltenes and resins) and inorganic particles.

View Article and Find Full Text PDF

The increasing availability of water quality datasets has led to a greater focus on hydrologic and water quality analysis, thus requiring more efficient and accurate modelling methods. Data mining techniques have been increasingly used for water quality analysis and prediction of the concentration and load of nitrogen pollutants instead of more traditional simulation methods. In this study, we tested the multilayer perceptron (MLP), k-nearest neighbor (k-NN), random forest, and reduced error pruning tree (REPTree) methods, along with the traditional linear regression, to predict nitrate levels based on long-term data from six watersheds with different land-use practices in the midwestern United States.

View Article and Find Full Text PDF

An automatic calibration framework of water quality parameters for surface runoff during modeling with InfoWorks ICM was constructed. The framework is based on a genetic algorithm (GA) and fully considers the calibration sequence for multiple water pollutants, namely, total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorous (TP). Meanwhile, four different objective functions including the Nash-Sutcliff efficiency coefficient (NSE), coefficient of determination (R), percentage error in the peak (PEP), and percentage bias (PBIAS) were selected as fitness evaluators for the GA.

View Article and Find Full Text PDF

Many kinds of antibiotics are continuously discharged into wastewater and typically cause a great decrease in sewage treatment performance, whereas mechanisms of differences in the impacts of commonly used antibiotics on phosphate removal are still elusive. Thus, an enhanced biological phosphorus removal (EBPR) system, as an effective method of phosphate removal, was developed, and its performance in the treatment of artificial wastewater containing antibiotics at short- (8 h) and long-term (15 days) exposure was investigated. The results show that phosphorus removal was consistently inhibited by the addition of antibiotics with a significant difference (P < 0.

View Article and Find Full Text PDF

Woodchip bioreactors can effectively remove waterborne nitrates from subsurface agricultural drainage and prevent the eutrophication of receiving water, but rapid biofilm growth can severely reduce water flux and denitrification efficiency of this practice within a few years. Tourmaline minerals with thermal excitation could generate reactive oxygen species which would inhibit bacterial growth. In this study, laboratory scale woodchip bioreactors were set up to test the anti-clogging and denitrification efficiency of heated woodchips with tourmaline, heated woodchips without tourmaline, and unheated woodchips.

View Article and Find Full Text PDF