Publications by authors named "Xiangfei Chen"

Fast scanning speed and low-power consumption are becoming progressively more and more important in realizing high-performance chiplet optical phased arrays (OPAs). Here, we successfully demonstrated integrated OPAs with multiple waveguides channels based on thin-film lithium niobate-on-insulator (LNOI) platform. Specifically, two lithium niobate (LN) OPA chips have been implemented with 32 and 48 channels LN waveguides, respectively, enabled by electro-optic modulations, which showcases the low power consumption (1.

View Article and Find Full Text PDF

In this paper, we propose and experimentally demonstrate a novel compact multi-port multi-wavelength laser source (MP-MWL) for the optical I/O technology. The multi-wavelength DFB laser array is used for realizing the simultaneous emission of multiple wavelengths. The reconstruction equivalent chirp technique is used to design and fabricate the π-phase shifted DFB laser array to achieve precise wavelength spacing.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers typically follow a two-step statistical process: conducting power analyses before collecting data and significance tests afterward.
  • Critics argue that significance tests offer limited insights and can easily be misused in research.
  • A proposed improved approach suggests replacing traditional power analysis with parameter estimation before data collection, and focusing on estimating probabilities of outcomes (better or worse) after data collection for more informative results.
View Article and Find Full Text PDF

We propose and demonstrate a dual-band microwave photonic radar scheme based on a monolithic integrated mutual injection laser. Based on the photon-photon resonance (PPR) and the gain switching effect of the integrated laser, the C-/X-band triangular chirp signals with high-quality and comparable power at 4.75-5.

View Article and Find Full Text PDF

A chip-scale chaotic laser system with optoelectronic delayed feedback is proposed and analyzed by numerical simulation. This chip eliminates the need for bulky delay components such as long optical fibers, free propagation and external cavities, relying solely on internal devices and waveguides to achieve feedback delay. This approach simplifies integration, maintaining a compact chip size.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a compact and efficient photonic convolution accelerator based on a hybrid integrated multi-wavelength DFB laser array by photonic wire bonding. The photonic convolution accelerator operates at 60.12 GOPS for one 3 × 3 kernel with a convolution window vertical sliding stride of 1 and generates 500 images of real-time image classification.

View Article and Find Full Text PDF

In this Letter, we design and experimentally demonstrate compact mode converters with a lightning-like and arrow-like polygonal subwavelength grating (SWG) structure on a silicon-on-insulator (SOI) platform, which can convert the TE mode to the TE and TE modes, respectively. The footprints of the proposed TE and TE mode converters are only 4.44 × 1.

View Article and Find Full Text PDF

A distributed feedback (DFB) laser array of twenty wavelengths with highly reflective and anti-reflective (HR-AR) coated facets is both theoretically analyzed and experimentally validated. While the HR facet coating enhances high wall-plug efficiency, it inadvertently introduces a random facet grating phase, thereby compromising the lasing wavelength's predictability and the stability of the single-longitudinal-mode (SLM). In this study, two key advancements are introduced: first, the precisely spaced wavelength is achieved with an error of within ±0.

View Article and Find Full Text PDF

A novel photonic method of linearly frequency-modulated (LFM) signal generation with high purity based on the monolithically integrated semiconductor laser (MISL) subject to the dynamical optoelectrical feedback is proposed and demonstrated in this paper. In this approach, the MISL is firstly operated in period-one state. By introducing the dynamical optoelectrical feedback to modulate the MISL, the generated LFM signals would be constantly optimized as long as the delay of the feedback loop is matched with the repetition period of the LFM signal.

View Article and Find Full Text PDF

We experimentally explore the practicality of integrated multiwavelength laser arrays (MLAs) for photonic convolutional neural network (PCNN). MLAs represent excellent performance for PCNN, except for imperfect wavelength spacings due to fabrication variation. Therefore, the performance of PCNN with non-ideal wavelength spacing is investigated experimentally and numerically for the first time.

View Article and Find Full Text PDF

We present a microsphere-based microsensor that can measure the vibrations of the miniature motor shaft (MMS) in a small space. The microsensor is composed of a stretched fiber and a microsphere with a diameter of 5 μm. When a light source is incident on the microsphere surface, the microsphere induces the phenomenon of photonic nanojet (PNJ), which causes light to pass through the front.

View Article and Find Full Text PDF

A novel high-speed directly modulated two-section distributed-feedback (TS-DFB) semiconductor laser based on the detuned-loading effect is proposed and simulated. A grating structure is designed by the reconstruction-equivalent-chirp (REC) technique. A π phase shift is introduced into the reflection grating, which can provide a narrow-band reflection region with a sharp falling slope on both sides of the reflection spectrum, thus enhancing the detuned-loading effect.

View Article and Find Full Text PDF

Real-time online identification of spacecraft segment damage is of great significance for realizing spacecraft structural health monitoring and life prediction. In this paper, a damage response characteristic field inversion algorithm based on the differential reconstruction of strain response is proposed to solve the problem of not being able to recognize the small damages of spacecraft structure directly by the strain response alone. Four crack damage location identification methods based on vector norm computation are proposed, which realize online identification and precise location of structural damage events without external excitation by means of spacecraft structural working loads only.

View Article and Find Full Text PDF

A dual-wavelength DFB laser array based on four phase-shifted grating and equivalent chirp technology is first proposed, fabricated, and experimentally demonstrated. The dual-wavelength emitting is achieved by symmetrically introducing two π phase shifts into a chirped four phase-shifted sampled grating cavity. Meanwhile, the beating signal of the dual-wavelength output is stabilized by applying an electro-absorption modulator integrated at the rear of the cavity.

View Article and Find Full Text PDF

We proposed and experimentally demonstrated a directly modulated distributed feedback (DFB) laser array with a transmission rate of 100 Gbps (10 ×10 ). The grating design is based on the reconstruction equivalent chirp (REC) technique, which enables precise control of the channel wavelength spacing to 100 GHz, as specified in the ITU-DWDM standard. DFB laser arrays incorporating the REC technique demonstrate excellent consistency performance, with a side-mode suppression ratio exceeding 48 dB, threshold current of approximately 20 mA, and modulation bandwidth of greater than 13 GHz at a bias current of 100 mA.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a simple and energy-efficient photonic convolutional accelerator based on a monolithically integrated multi-wavelength distributed feedback semiconductor laser using the superimposed sampled Bragg grating structure. The photonic convolutional accelerator operates at 44.48 GOPS for one 2 × 2 kernel with a convolutional window vertical sliding stride of 2 and generates 100 images of real-time recognition.

View Article and Find Full Text PDF

Multi-band linearly frequency-modulated (LFM) signal generation with a multiplying bandwidth is proposed and experimentally demonstrated. It is a simple photonics method based on the gain-switching state in a distributed feedback semiconductor laser without a complex external modulator and high-speed electrical amplifiers. With N comb lines, the carrier frequency and bandwidth of generated LFM signals are N times those of the reference signal.

View Article and Find Full Text PDF

A simple and highly efficient four-channel all-optical wavelength conversion based on four-wave mixing effect of the directly modulated three-section monolithically integrated semiconductor laser is proposed and experimentally investigated. For this wavelength conversion unit, the spacing of the wavelength can be adjusted by tuning the bias current of the lasers and setting it to be 0.4 nm (50 GHz) as a demonstration is this work.

View Article and Find Full Text PDF

We propose and theoretically study a two-section high-power distributed feedback (DFB) laser with three equivalent phase shifts (3EPSs). A tapered waveguide with a chirped sampled grating is introduced to amplify the output power and keep a stable single-mode operation. The simulation exhibits the maximum output power and side mode suppression ratio of a 1200 µm length two-section DFB laser as high as 306.

View Article and Find Full Text PDF

Background: In recent years, people have paid more and more attention to the health hazards caused by O3 exposure, which will become a major problem after fine particulate matter (PM).

Objective: To investigate the effects of ozone (O3) exposure on blood glucose levels in rats under different concentrations and times.

Methods: Eighty rats were divided into control group and three ozone concentration groups.

View Article and Find Full Text PDF

The traveling-wave like Fabry-Perot (F-P) resonators based on transverse-mode-conversion have been extensively studied as on-chip filters. However, the incomplete transverse mode conversion will lead to the coupling between two degenerated resonant modes, which brings additional loss and may further induce the resonance splitting. In this paper, we take the transverse-mode-conversion based resonator with anti-symmetric nanobeam Bragg reflector as an example and study the resonant mode coupling in both the direct-coupled and side-coupled resonators.

View Article and Find Full Text PDF

High-density reflow-compatible fiber I/O is one of the challenges for co-packaged optics (CPO). This paper developed a detachable coupling interface based on expanded beam edge coupling, which can be applied for optical coupling between lasers, PICs, and fibers, seamlessly supporting many channels with high efficiency. It comprises a removable fiber connector and a permanent chip/device connector, in which microlens/lens arrays are used for waveguide mode expansion and MT-like connectors are used for position registration.

View Article and Find Full Text PDF

The optically switched network can offset the increasing gap between datacenter traffic growth and electrical switch capacity due to the slowdown of Moore's law. Ultra-high-speed wavelength tunable lasers are especially vital for the high integration and performance improvement of the all-optical switching system. In this paper, a fast tunable laser based on a laser array is realized.

View Article and Find Full Text PDF

Due to the ability of changing light propagation path direction, curved waveguide Bragg grating (CWG) plays an important role in photonic integrated circuits. In this paper, we proposed a cascaded sampled Bragg grating on tilted waveguide (CSBG-TW) structure to equivalently realize CWG. As an example, by designing two-dimensional (2D) sampled gratings, the direction of +1 sub-grating vector in CSBG-TW can be changed.

View Article and Find Full Text PDF

This study aimed to investigate the regulatory function of lncRNA RMRP in non-alcoholic fatty liver disease (NAFLD). In vitro and in vivo NAFLD models were constructed. Hematoxylin & Eosin (H&E) and Oil-Red O staining assays were conducted to observe the morphology and lipid accumulation in liver tissues.

View Article and Find Full Text PDF