Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell receptor signaling and as such is an attractive target for cancer immunotherapy. Although the role of the HPK1 kinase domain (KD) has been extensively characterized, the function of its citron homology domain (CHD) remains elusive. Through a combination of structural, biochemical, and mechanistic studies, we characterize the structure-function of CHD in relationship to KD.
View Article and Find Full Text PDFBiotin- and digoxigenin (DIG)-conjugated therapeutic drugs are critical reagents used for the development of anti-drug antibody (ADA) assays for the assessment of immunogenicity. The current practice of generating biotin and DIG conjugates is to label a therapeutic antibody with biotin or DIG via primary amine groups on lysine or N-terminal residues. This approach modifies lysine residues nonselectively, which can impact the ability of an ADA assay to detect those ADAs that recognize epitopes located at or near the modified lysine residue(s).
View Article and Find Full Text PDFBackground: ZED8 is a novel monovalent antibody labeled with zirconium-89 for the molecular imaging of CD8. This work describes nonclinical studies performed in part to provide rationale for and to inform expectations in the early clinical development of ZED8, such as in the studies outlined in clinical trial registry NCT04029181 [1].
Methods: Surface plasmon resonance, X-ray crystallography, and flow cytometry were used to characterize the ZED8-CD8 binding interaction, its specificity, and its impact on T cell function.
Characterization of anti-CD20 antibody binding to CD20 is critical to development of anti-CD20 therapeutics. While SPR is widely used to characterize binding of therapeutics to their targets, its application to the characterization of anti-CD20 therapeutics has been limited by the challenges of obtaining recombinant or native full-length CD20 suitable for ligand binding assays. Extracellular vesicles (EVs) are nanoparticles naturally released from cells that provide a favorable microenvironment for membrane proteins such as CD20 to maintain proper conformation and activity.
View Article and Find Full Text PDFThe characterization of target binding interactions is critical at each stage of antibody therapeutic development. During early development, it is important to design fit-for-purpose in vitro molecular interaction characterization (MIC) assays that accurately determine the binding kinetics and the affinity of therapeutic antibodies for their targets. Such information enables PK/PD (pharmacokinetics/pharmacodynamics) modeling, estimation of dosing regimens, and assessment of potency.
View Article and Find Full Text PDFImmuno-PET is a molecular imaging technique utilizing positron emission tomography (PET) to measure the biodistribution of an antibody species labeled with a radioactive isotope. When applied as a clinical imaging technique, an immuno-PET imaging agent must be manufactured with quality standards appropriate for regulatory approval. This paper describes methods relevant to the chemistry, manufacturing, and controls component of an immuno-PET regulatory filing, such as an investigational new drug application.
View Article and Find Full Text PDFBinding interactions with the neonatal Fc receptor (FcRn) are one determinant of pharmacokinetic properties of recombinant human monoclonal antibody (rhumAb) therapeutics, and a conserved binding motif in the crystallizable fragment (Fc) region of IgG molecules interacts with FcRn. Surface plasmon resonance (SPR) biosensor assays are often used to characterize interactions between FcRn and rhumAb therapeutics. In such assays, generally either the rhumAb (format 1) or the FcRn protein (format 2) is immobilized on a biosensor chip.
View Article and Find Full Text PDFPurification processes for therapeutic antibodies typically exploit multiple and orthogonal chromatography steps in order to remove impurities, such as host-cell proteins. While the majority of host-cell proteins are cleared through purification processes, individual host-cell proteins such as Phospholipase B-like 2 (PLBL2) are more challenging to remove and can persist into the final purification pool even after multiple chromatography steps. With packed-bed chromatography runs using host-cell protein ELISAs and mass spectrometry analysis, we demonstrated that different therapeutic antibodies interact to varying degrees with host-cell proteins in general, and PLBL2 specifically.
View Article and Find Full Text PDFAnti-factor D (AFD; FCFD4514S, lampalizumab) is a humanized IgG Fab fragment directed against factor D (fD), a rate-limiting serine protease in the alternative complement pathway (AP). Evaluation of AFD as a potential intravitreal (IVT) therapeutic for dry age-related macular degeneration patients with geographic atrophy (GA) is ongoing. However, it is unclear whether IVT administration of AFD can affect systemic AP activation and potentially compromise host-immune responses.
View Article and Find Full Text PDFThe objectives of this study were to evaluate the relative binding and potencies of three inhibitors of vascular endothelial growth factor A (VEGF), used to treat neovascular age-related macular degeneration, and assess their relevance in the context of clinical outcome. Ranibizumab is a 48 kDa antigen binding fragment, which lacks a fragment crystallizable (Fc) region and is rapidly cleared from systemic circulation. Aflibercept, a 110 kDa fusion protein, and bevacizumab, a 150 kDa monoclonal antibody, each contain an Fc region.
View Article and Find Full Text PDFPharmacokinetic (PK) and immunohistochemistry (IHC) assays are essential to the evaluation of the safety and efficacy of therapeutic monoclonal antibodies (mAb) during drug development. These methods require reagents with a high degree of specificity because low concentrations of therapeutic antibody need to be detected in samples containing high concentrations of endogenous human immunoglobulins. Current assay reagent generation practices are labor-intensive and time-consuming.
View Article and Find Full Text PDFObjective: Numerous observations implicate interferon-α (IFNα) in the pathophysiology of systemic lupus erythematosus (SLE); however, the potential impact of endogenous anti-IFNα autoantibodies (AIAAs) on IFN-pathway and disease activity is unclear. The aim of this study was to characterize IFN-pathway activity and the serologic and clinical profiles of AIAA-positive patients with SLE.
Methods: Sera obtained from patients with SLE (n = 49), patients with rheumatoid arthritis (n = 25), and healthy control subjects (n = 25) were examined for the presence of AIAAs, using a biosensor immunoassay.
Antibody charge variants have gained considerable attention in the biotechnology industry due to their potential influence on stability and biological activity. Subtle differences in the relative proportions of charge variants are often observed during routine biomanufacture or process changes and pose a challenge to demonstrating product comparability. To gain further insights into the impact on biological activity and pharmacokinetics (PK) of monoclonal antibody (mAb) charge heterogeneity, we isolated the major charge forms of a recombinant humanized IgG1 and compared their in vitro properties and in vivo PK.
View Article and Find Full Text PDFCytokines are important cellular signaling proteins involved in inflammation, wound healing and are thought to direct the foreign body response to implanted materials. In this work, polyurethane tubes (25 mm length, 1.02 mm i.
View Article and Find Full Text PDFMicrodialysis sampling is a method that has promise for collection of important signaling proteins such as cytokines that are involved in every aspect of the immune response. The objective of this study was to determine the role of membrane and tissue alterations on the reduction of interleukin-6 (IL-6) relative recovery of microdialysis probes implanted for 3 and 7 days versus probes implanted on day 0 (acute implant or control probe). Lipopolysaccharide (LPS), a bacterial endotoxin, was used to elicit IL-6 production in the animals.
View Article and Find Full Text PDFMicrodialysis sampling is well-established for sampling small molecules. Recently, there has been an increased interest toward collecting macromolecules using microdialysis sampling. In this work, fluorescein isothiocyanate-labeled dextrans (FITC-dextrans) with molecular weight between 10 and 70 kDa were chosen as representative molecules to study analyte mass transport properties during microdialysis sampling using different lengths (2 and 10 mm) of 100-kDa MWCO polyethersulfone membranes.
View Article and Find Full Text PDFMicrodialysis sampling probes were used to collect cytokine samples from lipopolysaccharide (LPS)-stimulated macrophages. The probes were immersed into cell culture wells containing either RAW 264.7 or isolated peritoneal macrophages.
View Article and Find Full Text PDF