High energy density lithium-ion batteries (LIBs) adopting high-nickel layered oxide cathodes and silicon-based composite anodes always suffer from unsatisfied cycle life and poor safety performance, especially at elevated temperatures. Electrode /electrolyte interphase regulation by functional additives is one of the most economic and efficacious strategies to overcome this shortcoming. Herein, cyano-groups (-CN) are introduced into lithium fluorinated phosphate to synthesize a novel multifunctional additive of lithium tetrafluoro (1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) phosphate (LiTFTCP), which endows high nickel LiNi Co Mn O /SiO -graphite composite full cell with an ultrahigh cycle life and superior safety characteristics, by adding only 0.
View Article and Find Full Text PDFIn lithium-metal batteries (LMBs), the compatibility of Li anode and conventional lithium hexafluorophosphate-(LiPF ) carbonate electrolyte is poor owing to the severe parasitic reactions. Herein, to resolve this issue, a delicately designed additive of potassium perfluoropinacolatoborate (KFPB) is unprecedentedly synthesized. On the one hand, KFPB additive can regulate the solvation structure of the carbonate electrolyte, promoting the formation of Li FPB and K PF ion pairs with lower lowest unoccupied molecular orbital (LUMO) energy levels.
View Article and Find Full Text PDF