Publications by authors named "Xiangchen Hong"

Despite the remarkable multiple resonance (MR) optoelectronic properties of organic nanographenes with boron and nitrogen atoms disposed para to each other, the synthetic procedures are sophisticated with low yields and the molecular skeletons are limited. Here, a new paradigm of easy-to-access MR emitter is constructed by simplifying the multiborylation through amine-directed formation of B-N bonds while introducing an additional para-positioned nitrogen atom to trigger the MR effect. The proof-of-concept molecules exhibit narrowband emissions at 480 and 490 nm, with full width at half maxima (FWHMs) of only 29 and 34 nm.

View Article and Find Full Text PDF

High-efficiency and stable deep-blue bottom-emitting organic light-emitting diodes with Commission Internationale de l'Eclairage coordinates (CIE s) < 0.08 remain exclusive in the literature owing to the high excited-state energy of the emitters. Here, we propose the utilization of narrowband emitters to lower the excited-state energy for stable deep-blue devices by taking advantage of their high color purity.

View Article and Find Full Text PDF

Pure green emitters are essential for realizing an ultrawide color gamut in next-generation displays. Herein, by fusing the difficult-to-access aza-aromatics onto B (boron)-N (nitrogen) skeleton, a hybridized multi-resonance and charge transfer (HMCT) molecule AZA-BN was successfully synthesized through an effective one-shot multiple cyclization method. AZA-BN shows pure green fluorescence with photoluminance quantum yield of 99.

View Article and Find Full Text PDF

Recent research studies on noble-metal-free thermally activated delayed fluorescent (TADF) materials have boosted the efficiencies of organic light-emitting diodes (OLEDs) to unity. However, the short lifespan still hinders their further practical application. Carrier recombination pathways have been reported to have a significant influence on the efficiencies of TADF devices, though their effects on device lifetimes remain rarely studied.

View Article and Find Full Text PDF