Bisphenols are environmental toxins with endocrine disruptor activity, yet bisphenol A (BPA) and its analogs are still widely used in manufacturing plastic products. There is evidence showing that BPA elicits inflammation in humans and animals, but the target cell types of BPA are not well understood. In this study, we sought to determine BPA's direct effect on macrophages and BPA immunotoxicity in mouse intestine.
View Article and Find Full Text PDFBackground And Objectives: Activation of ghrelin receptor growth hormone secretagogue receptor (GHS-R) by endogenous or synthetic ligands amplifies pulsatile release of growth hormone (GH) and enhances food intake, very relevant to development and growth. GHS-R is a G-protein coupled receptor that has great druggable potential. Understanding the precise ligand and receptor interactions is crucial to advance the application of GHS-R.
View Article and Find Full Text PDFProteins that interact with cytoskeletal elements play important roles in cell division and are potentially important targets for therapy in cancer. Cytospin-A (CYTSA), a protein known to interact with actin and microtubules, has been previously described to be important in various developmental disorders, including oblique facial clefting. We hypothesized that CYTSA plays an important role in colorectal cancer (CRC) cell division.
View Article and Find Full Text PDFBackground/objectives: Ghrelin is an orexigenic hormone that increases food intake, adiposity, and insulin resistance through its receptor Growth Hormone Secretagogue Receptor (GHS-R). We previously showed that ghrelin/GHS-R signaling has important roles in regulation of energy homeostasis, and global deletion of GHS-R reduces obesity and improves insulin sensitivity by increasing thermogenesis. However, it is unknown whether GHS-R regulates thermogenic activation in adipose tissues directly.
View Article and Find Full Text PDFIn response to cold or diet, fatty acids are dissipated into heat through uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). This process is termed non-shivering thermogenesis, which is important for body temperature maintenance and contributes to obesity pathogenesis. Thermogenic enhancement has been considered a promising anti-obesity strategy.
View Article and Find Full Text PDFThe regulation of colorectal cancer cell survival pathways remains to be elucidated. Previously, it was demonstrated that endothelial cells (EC) from the liver (liver parenchymal ECs or LPEC), the most common site of colorectal cancer metastases, secrete soluble factors in the conditioned medium (CM) that, in turn, increase the cancer stem cell phenotype in colorectal cancer cells. However, the paracrine effects of LPECs on other colorectal cancer cellular functions have not been investigated.
View Article and Find Full Text PDFThe successful translation of laboratory research into effective therapies is dependent upon the validity of peer-reviewed publications. However, several publications in recent years suggested that published scientific findings could be reproduced only 11% to 45% of the time. Multiple surveys attempted to elucidate the fundamental causes of data irreproducibility and underscored potential solutions, more robust experimental designs, better statistics, and better mentorship.
View Article and Find Full Text PDFBackground: There is conflicting data on the role of macrophages in colorectal cancer (CRC); some studies have shown that macrophages can exert an anti-tumor effect whereas others show that macrophages are tumor promoting. We sought to determine the role of conditioned medium (CM) from macrophages, in particular classically activated macrophages, on the development of the CSC phenotype in CRC cells, which is believed to mediate tumor growth and chemoresistance.
Methods: Murine (CT26) and human (HCP-1) CRC cell lines were treated with CM from lipopolysaccharide (LPS)-activated murine macrophages.
Background: Vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) are key regulators of angiogenesis, affecting endothelial cell survival and function. However, the effect of VEGF-VEGFR signalling on tumour cell function is not well understood. Our previous studies in colorectal cancer (CRC) cells have demonstrated an intracrine VEGF/VEGFR1 signalling mechanism that mediates CRC cell survival and chemo-sensitivity.
View Article and Find Full Text PDFChronic infection and associated inflammation have long been suspected to promote human carcinogenesis. Recently, certain gut bacteria, including some in the genus, have been implicated in playing a role in human colorectal cancer development. However, the species and subspecies involved and their oncogenic mechanisms remain to be determined.
View Article and Find Full Text PDFIn colorectal cancer (CRC), cancer stem cells (CSCs) have been hypothesized to mediate cell survival and chemoresistance. Previous studies from our laboratory described a role for liver parenchymal endothelial cells (LPECs) in mediating the CSC phenotype in CRC cells in a paracrine/angiocrine fashion. The objectives of this study were to determine whether endothelial cells (ECs) from different organs can induce the CSC phenotype in CRC cells and to elucidate the signaling pathways involved.
View Article and Find Full Text PDFThe effects of vascular endothelial growth factor-A (VEGF-A/VEGF) and its receptors on endothelial cells function have been studied extensively, but their effects on tumor cells are less well defined. Studies of human colorectal cancer cells where the VEGF gene has been deleted suggest an intracellular role of VEGF as a cell survival factor. In this study, we investigated the role of intracrine VEGF signaling in colorectal cancer cell survival.
View Article and Find Full Text PDFEvidence is accumulating for the role of cancer stem cells (CSCs) in mediating chemoresistance in patients with metastatic colorectal cancer (mCRC). A disintegrin and metalloproteinase domain 17 (ADAM17; also known as tumor necrosis factor-α-converting enzyme [TACE]) was shown to be overexpressed and to mediate cell proliferation and chemoresistance in CRC cells. However, its role in mediating the CSC phenotype in CRC has not been well-characterized.
View Article and Find Full Text PDFUnlabelled: A large number of pseudogenes have been found to be transcribed in human cancers. However, only a few pseudogenes are functionally characterized. Here, we identified a transcribed pseudogene of VEGFR1, or fms-related tyrosine kinase 1 (FLT1), in human colorectal cancer cells.
View Article and Find Full Text PDFChemotherapy for patients with metastatic colorectal cancer (CRC) is the standard of care, but ultimately nearly all patients develop drug resistance. Understanding the mechanisms that lead to resistance to individual chemotherapeutic agents may help identify novel targets and drugs that will, in turn, improve therapy. Oxaliplatin is a common component combination therapeutic regimen for use in patients with metastatic CRC, but is also used as a component of adjuvant therapy for patients at risk for recurrent disease.
View Article and Find Full Text PDFCombination chemotherapy is standard for metastatic colorectal cancer; however, nearly all patients develop drug resistance. Understanding the mechanisms that lead to resistance to individual chemotherapeutic agents may enable identification of novel targets and more effective therapy. Irinotecan is commonly used in first- and second-line therapy for patients with metastatic colorectal cancer, with the active metabolite being SN38.
View Article and Find Full Text PDFWe report a paracrine effect whereby endothelial cells (ECs) promote the cancer stem cell (CSC) phenotype of human colorectal cancer (CRC) cells. We showed that, without direct cell-cell contact, ECs secrete factors that promoted the CSC phenotype in CRC cells via Notch activation. In human CRC specimens, CD133 and Notch intracellular domain-positive CRC cells colocalized in perivascular regions.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is a critical process providing tumor cells with the ability to migrate and escape from the primary tumor and metastasize to distant sites. Recently, EMT was shown to be associated with the cancer stem cell (CSC) phenotype in breast cancer. Snail is a transcription factor that mediates EMT in a number of tumor types, including colorectal cancer (CRC).
View Article and Find Full Text PDFBackground: Katanin p60 is a microtubule-severing protein and is involved in microtubule cytoskeleton organization in both mitotic and non-mitotic processes. Its role in cancer metastasis is unknown.
Methods: Differential protein profiles of bone marrow aspirates were analyzed by chromatography, electrophoresis, and mass spectrometry.
Cell adhesion molecules have been implicated in the colonization of cancer cells to distant organs. Prostate cancer (PCa) has a propensity to metastasize to bone, and cadherin-11, which is an osteoblast cadherin aberrantly expressed in PCa cells derived from bone metastases, has been shown to play a role in the metastasis of PCa cells to bone. However, the mechanism by which cadherin-11 is involved in this process is not known.
View Article and Find Full Text PDFMen with castration-resistant prostate cancer (PCa) frequently develop metastasis in bone. The reason for this association is unclear. We have previously shown that cadherin-11 (also known as OB-cadherin), a homophilic cell adhesion molecule that mediates osteoblast adhesion, plays a role in the metastasis of PCa to bone.
View Article and Find Full Text PDFBone is the most common site of metastases from prostate cancer. The mechanism by which prostate cancer cells metastasize to bone is not fully understood, but interactions between prostate cancer cells and bone cells are thought to initiate the colonization of metastatic cells at that site. Here, we show that cadherin-11 (also known as osteoblast-cadherin) was highly expressed in prostate cancer cell line derived from bone metastases and had strong homophilic binding to recombinant cadherin-11 in vitro.
View Article and Find Full Text PDFPurpose: Prostate cancer tends to metastasize to bone and induce osteoblastic lesions. We identified a soluble form of ErbB3 (sErbB3), p45-sErbB3, in bone marrow supernatant from men with prostate cancer bone metastasis and showed that p45-sErbB3 enhances bone formation. We aimed to understand clinical implications of sErbB3 by establishing an ELISA to detect sErbB3 levels in bone marrow and plasma samples.
View Article and Find Full Text PDFThe propensity for prostate cancer to metastasize to bone led us and others to propose that bidirectional interactions between prostate cancer cells and bone are critical for the preferential metastasis of prostate cancer to bone. We identified previously a secreted isoform of ErbB3 (p45-sErbB3) in bone marrow supernatant samples from men with prostate cancer and bone metastasis and showed by immunohistochemical analysis of human tissue specimens that p45-sErbB3 was highly expressed in metastatic prostate cancer cells in bone. Here, we show that p45-sErbB3 stimulated mouse calvaria to secrete factors that increased the invasiveness of prostate cancer cells in a Boyden chamber invasion assay.
View Article and Find Full Text PDFErbB-3, an ErbB receptor tyrosine kinase, has been implicated in the pathogenesis of several malignancies, including prostate cancer. We found that ErbB-3 expression was up-regulated in prostate cancer cells within lymph node and bone metastases. Despite being a plasma membrane protein, ErbB-3 was also detected in the nuclei of the prostate cancer cells in the metastatic specimens.
View Article and Find Full Text PDF