Publications by authors named "Xiangbo Wei"

Perineuronal nets (PNNs), a complex of extracellular matrix molecules that mostly surround GABAergic neurons in various brain regions, play a critical role in synaptic plasticity. The function and cellular mechanisms of PNNs in memory consolidation and reconsolidation processes are still not well understood. We hypothesized that PNNs protect long-term memory by limiting feedback inhibition from parvalbumin (PV) interneurons to projection neurons.

View Article and Find Full Text PDF

Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance.

View Article and Find Full Text PDF

White adipose tissue (WAT) serves as a reversible energy storage depot in the form of lipids in response to nutritional status. Cavin-1, an essential component in the biogenesis of caveolae, is a positive regulator of lipolysis in adipocytes. However, molecular mechanisms of cavin-1 in the modulation of lipolysis remain poorly understood.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease, and decreased fatty acid oxidation is one of the important contributors to NAFLD. Mitochondrial trifunctional protein α-subunit (MTPα) functions as a critical enzyme for fatty acid β-oxidation, but whether dysregulation of MTPα is pathogenically connected to NAFLD is poorly understood. We show that MTPα is acetylated at lysine residues 350, 383, and 406 (MTPα-3K), which promotes its protein stability by antagonizing its ubiquitylation on the same three lysines (MTPα-3K) and blocking its subsequent degradation.

View Article and Find Full Text PDF

Obesity is associated with chronic low-level inflammation, especially in fat tissues, which contributes to insulin resistance and type 2 diabetes mellitus (T2DM). Protein inhibitor of activated STAT 1 (PIAS1) modulates a variety of cellular processes such as cell proliferation and DNA damage responses. Particularly, PIAS1 functions in the innate immune system and is a key regulator of the inflammation cascade.

View Article and Find Full Text PDF