It is known that both transcriptional and post-transcriptional mechanisms control messenger RNA (mRNA) levels. Compared to transcriptional regulations, our understanding of how post-transcriptional regulations adapt during fatty liver progression at the whole-transcriptome level is unclear. While traditional RNA-seq analysis uses only reads mapped to exons to determine gene expression, recent studies support the idea that intron-mapped reads can be reliably used to estimate gene transcription.
View Article and Find Full Text PDFLong non-coding RNA (lncRNA) genes represent a large class of transcripts that are widely expressed across species. As most human lncRNAs are non-conserved, we recently employed a unique humanized liver mouse model to study lncRNAs expressed in human livers. We identified a human hepatocyte-specific lncRNA, hLMR1 (human lncRNA metabolic regulator 1), which is induced by feeding and promotes hepatic cholesterol synthesis.
View Article and Find Full Text PDFThe liver is the metabolic core of the whole body. Tools commonly used to study the human liver metabolism include hepatocyte cell lines, primary human hepatocytes, and pluripotent stem cells-derived hepatocytes in vitro, and liver genetically humanized mouse model in vivo. However, none of these systems can mimic the human liver in physiological and pathological states satisfactorily.
View Article and Find Full Text PDFDietary supplementation is a widely adapted strategy to maintain nutritional balance for improving health and preventing chronic diseases. Conflicting results in studies of similar design, however, suggest that there is substantial heterogenicity in individuals' responses to nutrients, and personalized nutrition is required to achieve the maximum benefit of dietary supplementation. In recent years, nutrigenomics studies have been increasingly utilized to characterize the detailed genomic response to a specific nutrient, but it remains a daunting task to define the signatures responsible for interindividual variations to dietary supplements for tissues with limited accessibility.
View Article and Find Full Text PDFBackground: Long non-coding RNAs (lncRNAs) have evolved as a critical regulatory mechanism for almost all biological processes. By dynamically interacting with their molecular partners, lncRNAs regulate gene activity at multiple levels ranging from transcription, pre-mRNA splicing, RNA transporting, RNA decay, and translation of mRNA.
Results And Conclusions: Dysregulation of lncRNAs has been associated with human diseases, including cancer, neurodegenerative, and cardiometabolic diseases.
Mouse is the most widely used animal model in biomedical research, but it remains unknown what causes the large number of differentially regulated genes between human and mouse livers identified in recent years. In this report, we aim to determine whether these divergent gene regulations are primarily caused by environmental factors or some of them are the result of cell-autonomous differences in gene regulation in human and mouse liver cells. The latter scenario would suggest that many human genes are subject to human-specific regulation and can only be adequately studied in a human or humanized system.
View Article and Find Full Text PDFA growing number of long noncoding RNAs (lncRNAs) have emerged as vital metabolic regulators. However, most human lncRNAs are nonconserved and highly tissue specific, vastly limiting our ability to identify human lncRNA metabolic regulators (hLMRs). In this study, we established a pipeline to identify putative hLMRs that are metabolically sensitive, disease relevant, and population applicable.
View Article and Find Full Text PDFUnlike protein-coding genes, the majority of human long non-coding RNAs (lncRNAs) are considered non-conserved. Although lncRNAs have been shown to function in diverse pathophysiological processes in mice, it remains largely unknown whether human lncRNAs have such in vivo functions. Here, we describe an integrated pipeline to define the in vivo function of non-conserved human lncRNAs.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) are RNA transcripts that are at least 200 nucleotides long and lack coding potential, and they have been demonstrated to be involved in a wide range of biological processes. Many lncRNAs, especially those enriched in nucleus, have been found to regulate gene expression at transcriptional level. Regulation of gene transcription by lncRNAs are mainly mediated by transcriptional regulators (TRs) which interact with lncRNAs.
View Article and Find Full Text PDFTo systemically identify long noncoding RNAs (lncRNAs) regulating energy metabolism, we performed transcriptome analyses to simultaneously profile mRNAs and lncRNAs in key metabolic organs in mice under pathophysiologically representative metabolic conditions. Of 4,759 regulated lncRNAs, function-oriented filters yield 359 tissue-specifically regulated and metabolically sensitive lncRNAs that are predicted by lncRNA-mRNA correlation analyses to function in diverse aspects of energy metabolism. Specific regulations of liver metabolically sensitive lncRNAs (lncLMS) by nutrients, metabolic hormones, and key transcription factors were further defined in primary hepatocytes.
View Article and Find Full Text PDFGlucose levels in mammals are tightly controlled through multiple mechanisms to meet systemic energy demands. Downregulation of hepatic glucokinase (GCK) during fasting facilitates the transition of the liver from a glucose-consuming to a gluconeogenic organ. Here, we report the transcriptional regulation of hepatic GCK by a long non-coding RNA (lncRNA) named liver GCK repressor (lncLGR).
View Article and Find Full Text PDFGlucose metabolism is one of the fundamental biochemical processes in mammals. Metabolism of glucose is subjected to tissue and cell specific regulation involving many transporters, enzymes, and transcriptional factors. Dysregulation of glucose metabolism has been linked to many human diseases such as diabetes and cancer.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) constitute a significant portion of mammalian genome, yet the physiological importance of lncRNAs is largely unknown. Here, we identify a liver-enriched lncRNA in mouse that we term liver-specific triglyceride regulator (lncLSTR). Mice with a liver-specific depletion of lncLSTR exhibit a marked reduction in plasma triglyceride levels.
View Article and Find Full Text PDFLiver glycogen metabolism plays an important role in glucose homeostasis. Glycogen synthesis is mainly regulated by glycogen synthase that is dephosphorylated and activated by protein phosphatase 1 (PP1) in combination with glycogen-targeting subunits or G subunits. There are seven G subunits (PPP1R3A to G) that control glycogenesis in different organs.
View Article and Find Full Text PDFObjective: Most animals experience fasting-feeding cycles throughout their lives. It is well known that the liver plays a central role in regulating glycogen metabolism. However, how hepatic glycogenesis is coordinated with the fasting-feeding cycle to control postprandial glucose homeostasis remains largely unknown.
View Article and Find Full Text PDFBackground & Aims: Interleukin-22 (IL-22) is a Th17-related cytokine within the IL-10 family and plays an important role in host defense and inflammatory responses in orchestration with other Th17 cytokines. IL-22 exerts its functions in non-immune cells as its functional receptor IL-22R1 is restricted in peripheral tissues but not in immune cells. It was recently found that IL-22 serves as a protective molecule to counteract the destructive nature of the T cell-mediated immune response to liver damage.
View Article and Find Full Text PDFApolipoprotein A-I (ApoA-I) is the most abundant protein constituent of high-density lipoprotein (HDL). Reduced plasma HDL and ApoA-I levels have been found to be associated with obesity and metabolic syndrome in human beings. However, whether or not ApoA-I has a direct effect on obesity is largely unknown.
View Article and Find Full Text PDF