Publications by authors named "Xiangbin Ding"

The CRISPR-Cas system functions as an adaptive immune mechanism in archaea and bacteria, providing defense against the invasion of foreign nucleic acids. Most CRISPR-Cas systems are classified into class 1 or class 2, with further subdivision into several subtypes. The primary distinction between class 1 and class 2 systems lies in the assembly of their effector modules.

View Article and Find Full Text PDF

Stearoyl-CoA desaturase-1 () is a key enzyme in the biosynthesis of monounsaturated fatty acids and is considered a candidate gene for improving milk and meat quality traits. Sanger sequencing was employed to investigate the genetic polymorphism of the fifth exon and intron of bovine , revealing four SNPs, g.21272246 A>G, g.

View Article and Find Full Text PDF

This study was to explore potential SNP loci for reproductive traits in Chinese Holstein cattle and identify candidate genes. Genome-wide Association Study based on mixed linear model was performed on 643 Holstein cattle using GeneSeek Bovine 50 K SNP chip. Our results detected forty significant SNP loci after Bonferroni correction.

View Article and Find Full Text PDF

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a superfamily of RNA-binding proteins consisting of more than 20 members. These proteins play a crucial role in various biological processes by regulating RNA splicing, transcription, and translation through their binding to RNA. In the context of muscle development and regeneration, hnRNPs are involved in a wide range of regulatory mechanisms, including alternative splicing, transcription regulation, miRNA regulation, and mRNA stability regulation.

View Article and Find Full Text PDF

Skeletal muscle satellite cells (MuSCs) can proliferate, differentiate, and self-renew, and can also participate in muscle formation and muscle injury repair. Long noncoding RNAs (lncRNAs) can play an important role with the RNA binding protein and microRNAs (miRNAs) to regulate the myogenesis of bovine MuSCs, however, its molecular mechanism is still being explored. In this study, differentially expressed 301 lncRNAs were identified during the myogenic differentiation of cells based on an in vitro model of induced differentiation of bovine MuSCs using RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

Myostatin (MSTN) is a negative regulator of skeletal muscle development and plays an important role in muscle development. Fluctuations in gene expression influenced by DNA methylation are critical for homeostatic responses in muscle. However, little is known about the mechanisms underlying this fluctuation regulation and myogenic differentiation of skeletal muscle.

View Article and Find Full Text PDF

Zinc oxide nanoparticles (ZnO NPs) have drawn serious concerns about their biotoxicity due to their extensive applications in biological medicine, clinical therapeutic, daily chemical production, food and agricultural additives. In our present study, we clarified hepatotoxic mechanism of ZnO NPs through investigating the crosstalk between autophagy and pyroptosis, a remaining enigma in hepatocyte stimulated by ZnO NPs. Based on the effects of autophagy intervention by Rapamycin (Rap) and 3-Methyladenine (3-MA), and the observation of pyroptosis morphology and related indexes, the autophagy and pyroptosis simultaneously initiated by ZnO NPs were interrelated and the autophagy characterized by autophagosome production and increased expression of autophagy proteins was identified as a protective response of ZnO NPs against pyroptosis.

View Article and Find Full Text PDF

Myoblast differentiation is essential for the formation of skeletal muscle myofibers. Profilin1 (Pfn1) has been identified as an actin-associated protein, and has been shown to be critically important to cellular function. Our previous study found that PFN1 may inhibit the differentiation of bovine skeletal muscle satellite cells, but the underlying mechanism is not known.

View Article and Find Full Text PDF

Adequate regulation of the speed of follicular development has been reported to prolong the reproductive life of the ovary. The aim of the present study was to assess the potential effects and mechanism of the Ca/calmodulin‑dependent protein kinase II (CaMKII) pathway on the development of ovarian follicle. In the present study, the expression of CaMKII was measured in the ovary of mice at different developmental stages by immunofluorescence, confirming that CaMKII has a role in follicular development.

View Article and Find Full Text PDF

Myostatin (MSTN) is an important negative regulator of muscle growth and development. In this study, we performed comparatively the proteomics analyses of gluteus tissues from MSTN Mongolian cattle (MG.MSTN) and wild type Mongolian cattle (MG.

View Article and Find Full Text PDF

Myogenesis, the process of skeletal muscle formation, is a highly coordinated multistep biological process. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are emerging as a gatekeeper in myogenesis. Up to now, most studies on muscle development-related lncRNAs are mainly focussed on humans and mice.

View Article and Find Full Text PDF

Skeletal muscle, the most abundant and plasticity tissue in mammals, is essential for various functions such as movement, breathing, maintaining posture and metabolism. Myogenesis is a complex and precise process, which is regulated by the sequential expression of multiple transcription factors, and accumulating evidence have confirmed that multiple lncRNAs are involved in muscle development as the important transcriptional regulator. In this study, a novel lncRNA, named lnc403 was obtained, with a full-length 2689 bp, which had poor coding ability and was mainly expressed in the nucleus of myoblasts and myotubes.

View Article and Find Full Text PDF

The molecular mechanism underlying myostatin (MSTN)-regulated metabolic cross-talk remains poorly understood. In this study, we performed comparative proteomic and phosphoproteomic analyses of gluteus muscle tissues from MSTN transgenic cattle using a shotgun-based tandem mass tag (TMT) 6-plex labeling method to explore the signaling pathway of MSTN in metabolic cross-talk and cellular metabolism during muscle development. A total of 72 differentially expressed proteins (DEPs) and 36 differentially expressed phosphoproteins (DEPPs) were identified in MSTN cattle compared to wild-type cattle.

View Article and Find Full Text PDF

Accumulating evidence suggests that long non-coding RNAs (lncRNAs) play a crucial role in regulating skeletal muscle myogenesis, a highly coordinated multistep biological process. However, most studies of lncRNAs have focused on humans, mouse, and other model animals. In this study, we identified a novel lncRNA, named lncKBTBD10, located in the nucleus and involved in the proliferation and differentiation of bovine skeletal muscle satellite cells.

View Article and Find Full Text PDF

-encoded myostatin is a negative regulator of skeletal muscle development. Here, we utilized the gluteus tissues from MSTN gene editing and wild type Luxi beef cattle which are native breed of cattle in China, performed tandem mass tag (TMT) -based comparative proteomics and phosphoproteomics analyses to investigate the regulatory mechanism of related to cellular metabolism and signaling pathway in muscle development. Out of 1,315 proteins, 69 differentially expressed proteins (DEPs) were found in global proteomics analysis.

View Article and Find Full Text PDF

The biosafety of fat-1 transgenic cattle has been a focus of our studies since the first fat-1 transgenic cow was born. In this study, we used tandem mass tag labeling, TiO enrichment, and nanoscale liquid chromatography coupled with tandem mass spectrometry (nanol LC-MS/MS) to compare proteomic and phosphoproteomic profiling analyses of muscle between fat-1 transgenic cows and wild-type cows. A total of 1555 proteins and 900 phosphorylation sites in 159 phosphoproteins were identified in the profiling assessments, but only four differentially expressed proteins and nine differentially expressed phosphopeptides were detected in fat-1 transgenic cows relative to wild-type cows.

View Article and Find Full Text PDF

The n-3 PUFAs have many beneficial effects on human health, including roles in immunity, neurodevelopment, and preventing cardiovascular disease. In this study, we established reliable model transgenic cattle using transgenic technology and performed a systematic investigation to examine the function of n-3 PUFAs. Our results showed that expression of the gene improved several biochemical parameters related to liver function and to plasma glucose and plasma lipid metabolism.

View Article and Find Full Text PDF

Long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) are beneficial for human health. However, humans and mammals are unable to synthesize n-3 PUFAs because they lack the n-3 desaturase gene fat-1 and must therefore obtain this type of fatty acid through their diet. Through the production of fat-1 transgenic animals, it is possible to obtain animal products that are rich in n-3 PUFAs, such as meat and milk.

View Article and Find Full Text PDF

Considerable evidence suggests that the gut microbiota is complex in many mammals and gut bacteria communities are essential for maintaining gut homeostasis. To date the research on the gut microbiota of donkey is surprisingly scarce. Therefore, we performed high-throughput sequencing of the 16S rRNA genes V5-V6 hypervariable regions from gut fecal material to characterize the gut microbiota of healthy donkeys and compare the difference of gut microbiota between male and female donkeys.

View Article and Find Full Text PDF

The gene encoding diacylglycerol acyltransferase (DGAT1) is a functional and positional candidate gene for milk and intramuscular fat content. A bovine DGAT1 overexpression vector was constructed containing mouse MCK promoter and bovine DGAT1 cDNA. MCK-DGAT1 transgene in FVB mice was researched in present study.

View Article and Find Full Text PDF

To improve the developmental potential of somatic cell cloned embryos derived from demecolcine (DC) induced-enucleated nuclear transfer (INT), we modified the INT procedures by transferring donor nuclei into recipient cytoplasts prior to the induced enucleation of the recipient cytoplasts, and we called this modified INT technique as reverse-order and induced-enucleated nuclear transfer (RINT). Standard nuclear transfer (SNT) and INT were performed as controls. The dynamic changes of maternal and transferred donor nuclei in the RINT oocytes were monitored to evaluate the feasibility of this new nuclear transfer (NT) technique by timed immunofluorescence.

View Article and Find Full Text PDF