is an amphicarpic plant in the Brassicaceae family. Plants develop two fruit types, one above and another below ground. This rare trait is associated with octoploidy in .
View Article and Find Full Text PDFHow tissue-level information encoded by fields of regulatory gene activity is translated into the patterns of cell polarity and growth that generate the diverse shapes of different species remains poorly understood. Here, we investigate this problem in the case of leaf shape differences between , which has simple leaves, and its relative that has complex leaves divided into leaflets. We show that patterned expression of the transcription factor CUP-SHAPED COTYLEDON1 in (ChCUC1) is a key determinant of leaf shape differences between the two species.
View Article and Find Full Text PDFN-Methyladenosine (mA) is one of the most abundant modifications of eukaryotic mRNA, but its comprehensive biological functionality remains further exploration. In this study, we identified and characterized a new flowering-promoting gene, EARLY HEADING DATE6 (EHD6), in rice. EHD6 encodes an RNA recognition motif (RRM)-containing RNA binding protein that is localized in the non-membranous cytoplasm ribonucleoprotein (RNP) granules and can bind both mA-modified RNA and unmodified RNA indiscriminately.
View Article and Find Full Text PDFWe study natural DNA polymorphisms and associated phenotypes in the Arabidopsis relative Cardamine hirsuta. We observed strong genetic differentiation among several ancestry groups and broader distribution of Iberian relict strains in European C. hirsuta compared to Arabidopsis.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2023
Line, plane and hyperplane detection in multidimensional data has many applications in computer vision and artificial intelligence. We propose Integrated Fast Hough Transform (IFHT), a highly-efficient multidimensional Hough transform algorithm based on a new mathematical model. The parameter space of IFHT can be represented with a single k-tree to support hierarchical storage and "coarse-to-fine" search strategy.
View Article and Find Full Text PDFHigh-quality genome assembly has wide applications in genetics and medical studies. However, it is still very challenging to achieve gap-free chromosome-scale assemblies using current workflows for long-read platforms. Here we report on GALA (Gap-free long-read Assembly tool), a computational framework for chromosome-based sequencing data separation and de novo assembly implemented through a multi-layer graph that identifies discordances within preliminary assemblies and partitions the data into chromosome-scale scaffolding groups.
View Article and Find Full Text PDFPlants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures.
View Article and Find Full Text PDFPolyploidization is pervasive in plants, but little is known about the niche divergence of wild allopolyploids (species that harbor polyploid genomes originating from different diploid species) relative to their diploid progenitor species and the gene expression patterns that may underlie such ecological divergence. We conducted a fine-scale empirical study on habitat and gene expression of an allopolyploid and its diploid progenitors. We quantified soil properties and light availability of habitats of an allotetraploid Cardamine flexuosa and its diploid progenitors Cardamine amara and Cardamine hirsuta in two seasons.
View Article and Find Full Text PDFA key challenge in biology is to understand how the regional control of cell growth gives rise to final organ forms. Plant leaves must coordinate growth along both the proximodistal and mediolateral axes to produce their final shape. However, the cell-level mechanisms controlling this coordination remain largely unclear.
View Article and Find Full Text PDFPolycarpic perennials maintain vegetative growth after flowering. PERPETUAL FLOWERING 1 (PEP1), the orthologue of FLOWERING LOCUS C (FLC) in Arabis alpina regulates flowering and contributes to polycarpy in a vernalisation-dependent pathway. pep1 mutants do not require vernalisation to flower and have reduced return to vegetative growth as all of their axillary branches become reproductive.
View Article and Find Full Text PDFWith the broad application of high-throughput sequencing, more whole-genome resequencing data and assemblies of natural populations are becoming available. For a particular species, in general, only the reference genome is well established and annotated. Computational tools based on sequence alignment have been developed to investigate the gene models of individuals belonging to the same or closely related species.
View Article and Find Full Text PDFMechanisms through which the evolution of gene regulation causes morphological diversity are largely unclear. The tremendous shape variation among plant leaves offers attractive opportunities to address this question. In cruciferous plants, the REDUCED COMPLEXITY (RCO) homeodomain protein evolved via gene duplication and acquired a novel expression domain that contributed to leaf shape diversity.
View Article and Find Full Text PDFPlants have evolved two major ways to deal with nearby vegetation or shade: avoidance and tolerance. Moreover, some plants respond to shade in different ways; for example, Arabidopsis () undergoes an avoidance response to shade produced by vegetation, but its close relative tolerates shade. How plants adopt opposite strategies to respond to the same environmental challenge is unknown.
View Article and Find Full Text PDFLand plants co-speciate with a diversity of continually expanding plant specialized metabolites (PSMs) and root microbial communities (microbiota). Homeostatic interactions between plants and root microbiota are essential for plant survival in natural environments. A growing appreciation of microbiota for plant health is fuelling rapid advances in genetic mechanisms of controlling microbiota by host plants.
View Article and Find Full Text PDFThe Brassicaceae family comprises c. 4000 species including economically important crops and the model plant Arabidopsis thaliana. Despite their importance, the relationships among major lineages in the family remain unresolved, hampering comparative research.
View Article and Find Full Text PDFHow the interplay between cell- and tissue-level processes produces correctly proportioned organs is a key problem in biology. In plants, the relative size of leaves compared with their lateral appendages, called stipules, varies tremendously throughout development and evolution, yet relevant mechanisms remain unknown. Here we use genetics, live imaging, and modeling to show that in leaves the LATE MERISTEM IDENTITY1 (LMI1) homeodomain protein regulates stipule proportions via an endoreduplication-dependent trade-off that limits tissue size despite increasing cell growth.
View Article and Find Full Text PDFShort insertions, deletions (INDELs) and larger structural variants have been increasingly employed in genetic association studies, but few improvements over SNP-based association have been reported. In order to understand why this might be the case, we analysed two publicly available datasets and observed that 63% of INDELs called in A. thaliana and 64% in D.
View Article and Find Full Text PDFTo understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus.
View Article and Find Full Text PDFFinding causal relationships between genotypic and phenotypic variation is a key focus of evolutionary biology, human genetics and plant breeding. To identify genome-wide patterns underlying trait diversity, we assembled a high-quality reference genome of Cardamine hirsuta, a close relative of the model plant Arabidopsis thaliana. We combined comparative genome and transcriptome analyses with the experimental tools available in C.
View Article and Find Full Text PDFHow mechanical and biological processes are coordinated across cells, tissues, and organs to produce complex traits is a key question in biology. Cardamine hirsuta, a relative of Arabidopsis thaliana, uses an explosive mechanism to disperse its seeds. We show that this trait evolved through morphomechanical innovations at different spatial scales.
View Article and Find Full Text PDFWe performed array comparative genome hybridization (aCGH) analyses of five mutants with genomic deletions ranging in size from 4 bp to > 5 kb. We used the Roche NimbleGen CGH 3 × 720 K whole genome custom tiling array to optimize deletion detection. Details of the microarray design and hybridization data have been deposited at the NCBI GEO repository with accession number GSE55327.
View Article and Find Full Text PDF