Publications by authors named "Xiang-Shi Tan"

Tetracyclines are one class of widely used antibiotics. Meanwhile, due to abuse and improper disposal, they are often detected in wastewater, which causes a series of environmental problems and poses a threat to human health and safety. As an efficient and environmentally friendly method, enzymatic catalysis has attracted much attention.

View Article and Find Full Text PDF

Heme proteins perform a variety of biological functions and also play significant roles in the field of bio-catalysis. The β-lactamase activity of heme proteins has rarely been reported. Herein, we found, for the first time, that myoglobin (Mb), an O carrier, also exhibits novel β-lactamase activity by catalyzing the hydrolysis of ampicillin.

View Article and Find Full Text PDF

Malachite green (MG)-contaminated wastewater resulting from industrialization causes a global problem because of its toxicity and widespread usage. Compared with traditional physical and chemical approaches, biodegradation provides a new route for the degradation of MG. As promising candidates for native enzymes, artificial enzymes have received tremendous attention for potential applications due to unlimited possibilities based on precise design.

View Article and Find Full Text PDF

The biological function and stability of a cytochrome P450 (CYP) mainly depend on the subtle properties of the residues in the active site cavity, which are generally more divergent among proteins than other parts of the protein. As the most unique member of human CYP2C family, CYP2C8 has an isoleucine (Ile) 476 instead of phenylalanine (Phe) in substrate recognizing site 6 (SRS6). However, the role of Ile476 of CYP2C8 is still unknown.

View Article and Find Full Text PDF

Metallothinein-3 (MT3), also named neuronal growth inhibitory factor (GIF), is attractive by its distinct neuronal growth inhibitory activity, which is not shared by other MT isoforms. The polypeptide chain of GIF is folded into two individual domains, which are connected by a highly conserved linker, KKS. In order to figure out the significance of the conserved segment, we constructed several mutants of human GIF (hGIF), including the K31/32A mutant, the K31/32E mutant and the KKS-SP mutant by site-directed mutagenesis.

View Article and Find Full Text PDF

Human metallothionein-3 (hMT3), also named as human neuronal growth inhibitory factor (hGIF), can inhibit the outgrowth of embryonic cortical neurons in the presence of brain extracts. In order to systematically study the structure-property-reactivity-function relationship of hGIF, our laboratory designed a series of mutants and studied their structure, property, reactivity and functions by a series of chemical and biological tools including UV spectroscopy, CD spectroscopy, NMR, chemical reaction and primary neuronal culture assays. In summary, we concluded that the bioactivity of hGIF was regulated by multiple factors, including the (6)CPCP(9) motif, an additional threonine insert at sequence position 5, domain-domain interactions, the structure and stability of the metal-thiolate cluster and the linker.

View Article and Find Full Text PDF

The hydrolysis of glycylglycine (GylGly), glycyl-L-leucine (GlyLeu), L-leucylglycine (LeuGly) and glycyl-DL-serine (GlySer) promoted by a copper(II)- cis, cis-1,3,5-triaminocyclohexane complex [Cu(II)TACH] was investigated at 70 degrees C and pH 7-10, using HPLC. The observed pseudo-first-order rate constants (k(obs)) and rate enhancing factors (REF) were as follows: 4.1x10(-3 )h(-1)(REF=23) for GylGly, 1.

View Article and Find Full Text PDF

Kinetics of methyl group transfer between the Ni-Fe-S-containing acetyl-CoA synthase (ACS) and the corrinoid protein (CoFeSP) from Clostridium thermoaceticum were investigated using the stopped-flow method at 390 nm. Rates of the reaction CH(3)-Co(3+)FeSP + ACS(red) <==> Co(1+)FeSP + CH(3)-ACS(ox) in both forward and reverse directions were determined using various protein and reductant concentrations. Ti(3+)citrate, dithionite, and CO were used to reductively activate ACS (forming ACS(red)).

View Article and Find Full Text PDF