Publications by authors named "Xiang-Ru Wen"

Ischemic stroke ranks among the leading causes of death and disability in humans and is accompanied by motor and cognitive impairment. However, the precise mechanisms underlying injury after stroke and effective treatment strategies require further investigation. Peroxiredoxin-1 (PRDX1) triggers an extensive inflammatory cascade that plays a pivotal role in the pathology of ischemic stroke, resulting in severe brain damage from activated microglia.

View Article and Find Full Text PDF

Ischemic stroke is a devastative nervous system disease associated with high mortality and morbidity rates. Unfortunately, no clinically effective neuroprotective drugs are available now. In ischemic stroke, S100 calcium-binding protein b (S100b) binds to receptor for advanced glycation end products (Rage), leading to the neurological injury.

View Article and Find Full Text PDF

Neuroinflammation plays a pivotal role in the pathogenesis of Central Nervous System (CNS) diseases. The phenolic glucoside gastrodin (GAS), has been known to treat CNS disorders by exerting anti-inflammatory activities. Our aim was to investigate the potential neuroprotective mechanisms of GAS on lipopolysaccharide (LPS)-induced mice.

View Article and Find Full Text PDF

Cerebral ischemia/reperfusion (I/R) injury is a leading cause of learning and memory dysfunction. Hydrogen sulfide (HS) has been shown to confer neuroprotection in various neurodegenerative diseases, including cerebral I/R-induced hippocampal CA1 injury. However, the underlying mechanisms have not been completely understood.

View Article and Find Full Text PDF

Rosmarinic acid, a common ester extracted from Rosemary, Perilla frutescens, and Salvia miltiorrhiza Bunge, has been shown to have protective effects against various diseases. This is an investigation into whether rosmarinic acid can also affect the changes of white matter fibers and cognitive deficits caused by hypoxic injury. The right common carotid artery of 3-day-old rats was ligated for 2 hours.

View Article and Find Full Text PDF

Heme oxygenase (HO-1), which may be induced by Cobaltic protoporphyrin IX chloride (CoPPIX) or Rosiglitazone (Ros), is a neuroprotective agent that effectively reduces ischemic stroke. Previous studies have shown that the neuroprotective mechanisms of HO-1 are related to JNK signaling. The expression of HO-1 protects cells from death through the JNK signaling pathway.

View Article and Find Full Text PDF

Although Butylphthalide (BP) has protective effects that reduce ischemia-induced brain damage and neuronal cell death, little is known about the precise mechanisms occurring during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to investigate the neuroprotective mechanisms of BP against ischemic brain injury induced by cerebral I/R through inhibition of the c-Jun N-terminal kinase (JNK)-Caspase3 signaling pathway. BP in distilled non-genetically modified Soybean oil was administered intragastrically three times a day at a dosage of 15 mg/(kg day) beginning at 20 min after I/R in Sprague-Dawley rats.

View Article and Find Full Text PDF

Chronic inflammation appears to play a critical role in sickness behavior caused by diabetes mellitus. Astaxanthin has been used in treating diabetes mellitus and diabetic complications because of its neuroprotective and anti-inflammatory actions. However, whether astaxanthin can improve sickness behavior induced by diabetes and its potential mechanisms are still unknown.

View Article and Find Full Text PDF

In this study, we investigated the neuroprotective effect of sevoflurane against ischemic brain injury and its underlying molecular mechanisms. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with sevoflurane alone or sevoflurane combined with LY294002/wortmannin (selective inhibitor of PI3K) before ischemia.

View Article and Find Full Text PDF

Mangiferin has been extensively applied in different fields due to its anti-inflammatory properties. However, the precise mechanism used by mangiferin on lipopolysaccharide (LPS)-induced inflammation has not been elucidated. Here, we discuss the potential mechanism of mangiferin during a LPS-induced brain injury.

View Article and Find Full Text PDF

Although previous researches indicated that heme oxygenase-1 (HO-1) plays a conspicuous role in neuronal injury induced by reperfusion following the brain ischemia, reasonable mechanisms for the role of HO-1 are not clear. In this work, we investigated whether HO-1 was involved in the regulation of the c-Jun N-terminal kinase (JNK) signaling pathway and neuronal cell injury induced by the brain ischemia followed by reperfusion. Cobaltic protoporphyrin (CoPP), an activator of HO-1, was administrated to induce the overexpression of HO-1 by intracerebroventricular infusion 20 min before ischemia.

View Article and Find Full Text PDF

Previous studies have shown that KA receptor subunit GluR6 mediated c-Jun N-terminal protein kinase (JNK) signaling is involved in global ischemia injury. Our present study indicates that focal ischemic brain insult on rat middle cerebral artery occlusion (MACo) model enhances the assembly of the GluR6-PSD95-MLK3 module and facilitates the phosphorylation of JNK. Most importantly, a peptide containing the TAT protein transduction sequence, Tat-GluR6-9c, can perturb the assembly of the GluR6-PSD95-MLK3 signaling module and suppress the activation of MLK3, MKK7/4 and JNK.

View Article and Find Full Text PDF

Our previous study showed that kainate (KA) receptor subunit GluR6 played an important role in ischemia-induced MLK3 and JNK activation and neuronal degeneration through the GluR6-PSD95-MLK3 signaling module. However, whether the KA receptors subunit GluR6 is involved in the activation of p38 MAP kinase during the transient brain ischemia/reperfusion (I/R) in the rat hippocampal CA1 subfield is still unknown. In this present study, we first evaluated the time-course of phospho-p38 MAP kinase at various time-points after 15 min of ischemia and then observed the effects of antagonist of KA receptor subunit GluR6, GluR6 antisence oligodeoxynucleotides on the phosphorylation of p38 MAP kinase induced by I/R.

View Article and Find Full Text PDF