Enzymatic activity is heavily influenced by pH, but the rationale for the dynamical mechanism of pH-dependent enzymatic activity has not been fully understood. In this work, combined neutron scattering techniques, including quasielastic neutron scattering (QENS) and small angle neutron scattering (SANS), are used to study the structural and dynamic changes of a model enzyme, xylanase, under different pH and temperature environments. The QENS results reveal that xylanase at optimal pH exhibits faster relaxational dynamics and a lower energy barrier between conformational substates.
View Article and Find Full Text PDFRecent research indicates that graphene oxide (GO) nanosheets can be used to regulate ice formation by controlling critical ice nucleus growth in water at supercooling temperatures. In addition, the study of ice formation mechanisms regulated by GO nanosheets, a good model system for antifreeze proteins (AFPs), will shed light on how AFPs regulate ice formation in nature. In this work, time-resolved small-angle x-ray scattering (TR-SAXS) and quasi-elastic neutron scattering (QENS) experiments were carried out to investigate the structural and dynamical mechanisms of ice formation regulated by GO nanosheets.
View Article and Find Full Text PDFThe mesophilic inorganic pyrophosphatase from Escherichia coli (EcPPase) retains function at 353 K, the physiological temperature of hyperthermophilic Thermococcus thioreducens, whereas the homolog protein (TtPPase) from this hyperthermophilic organism cannot function at room temperature. To explain this asymmetric behavior, we examined structural and dynamical properties of the two proteins using molecular dynamics simulations. The global flexibility of TtPPase is significantly higher than its mesophilic homolog at all tested temperature/pressure conditions.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
December 2018
The scattering of neutrons can be used to provide information on the structure and dynamics of biological systems on multiple length and time scales. Pursuant to a National Science Foundation-funded workshop in February 2018, recent developments in this field are reviewed here, as well as future prospects that can be expected given recent advances in sources, instrumentation and computational power and methods. Crystallography, solution scattering, dynamics, membranes, labeling and imaging are examined.
View Article and Find Full Text PDFKnowledge of the activation principles for G-protein-coupled receptors (GPCRs) is critical to development of new pharmaceuticals. Rhodopsin is the archetype for the largest GPCR family, yet the changes in protein dynamics that trigger signaling are not fully understood. Here we show that rhodopsin can be investigated by small-angle neutron scattering (SANS) in fully protiated detergent micelles under contrast matching to resolve light-induced changes in the protein structure.
View Article and Find Full Text PDFIn this article, we elucidate the protein activity from the perspective of protein softness and flexibility by studying the collective phonon-like excitations in a globular protein, human serum albumin (HSA), and taking advantage of the state-of-the-art inelastic X-ray scattering (IXS) technique. Such excitations demonstrate that the protein becomes softer upon thermal denaturation due to disruption of weak noncovalent bonds. On the other hand, no significant change in the local excitations is detected in ligand- (drugs) bound HSA compared to the ligand-free HSA.
View Article and Find Full Text PDFLight activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond-nanosecond time scale, crucial for protein function, as only observed for globular proteins previously.
View Article and Find Full Text PDFNontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential.
View Article and Find Full Text PDFInorganic pyrophosphatase (IPPase) from Thermococcus thioreducens is a large oligomeric protein derived from a hyperthermophilic microorganism that is found near hydrothermal vents deep under the sea, where the pressure is up to 100 MPa (1 kbar). It has attracted great interest in biophysical research because of its high activity under extreme conditions in the seabed. In this study, we use the quasielastic neutron scattering (QENS) technique to investigate the effects of pressure on the conformational flexibility and relaxation dynamics of IPPase over a wide temperature range.
View Article and Find Full Text PDFβ-Casein is a component of casein micelle with amphillic nature and is recognized as a "natively disordered" protein that lacks secondary structures. In this study, the temperature and hydration effects on the dynamics of β-casein are explored by quasielastic neutron scattering (QENS). An upturn in the mean square displacement (MSD) of hydrated β-casein indicates an increase of protein flexibility at a temperature of ~225 K.
View Article and Find Full Text PDFThe dynamics of RNA within the β-relaxation region of 10 ps to 1 ns is crucial to its biological function. Because of its simpler chemical building blocks and the lack of the side methyl groups, faster relaxational dynamics of RNA compared to proteins can be expected. However, the situation is actually opposite.
View Article and Find Full Text PDFBoth the structure and dynamics of biomolecules are known to be essential for their biological function. In the dehydrated state, the function of biomolecules, such as proteins, is severely impeded, so hydration is required for bioactivity. The dynamics of the hydrated biomolecules and their hydration water are related - but how closely? The problem involves several layers of complexity.
View Article and Find Full Text PDFThe purpose of this investigation is to determine whether a large oligomeric protein, inorganic pyrophosphatase (IPPase) from Thermococcus thioreducens with quaternary structural complexity, would have distinguishable dynamic characteristics compared to those of the small simple monomeric model protein, lysozyme. In this study, the β-relaxational dynamics of the two proteins, IPPase and lysozyme, are compared in the 10 ps to 0.5 ns time interval using quasi-elastic neutron scattering (QENS).
View Article and Find Full Text PDFStudies of the low-temperature dynamics of proteins in aqueous solutions are limited by the crystallization of water. In this work, we use a solution of LiCl in D2O as a solvent for a protein to prevent crystallization and study the dynamics of both the protein and its aqueous solvent by quasielastic neutron scattering (QENS) in the temperature range of 210 to 290 K. Our results reveal that, while the dynamics of the aqueous solvent undergoes a crossover at about 220 K, the dynamics of the protein itself shows no transition at this temperature.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2011
Quasielastic neutron scattering (QENS) was used to investigate the diffusion dynamics of hydration water on the surface of rutile (TiO(2)) nanopowder. The dynamics measurements utilizing two inelastic instruments, a backscattering spectrometer and a disk chopper spectrometer, probed the fast, intermediate, and slow motions of the water molecules on the time scale of picoseconds to more than a nanosecond. We employed a model-independent analysis of the data collected at each value of the scattering momentum transfer to investigate the temperature dependence of several diffusion components.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2010
Quasielastic neutron scattering was used to study the dynamics of three-dimensional confined water in a hydrophobic mesoporous material designated as CMK-1 in the temperature range from 250 to 170 K. We observe a crossover phenomenon at temperature T(L) . We find that T(L) of water confined in CMK-1 occurs in between previous observations of one-dimensional confined water in materials with different hydrophilicities.
View Article and Find Full Text PDFThe low-temperature behavior of proteins under high pressure is not as extensively investigated as that at ambient pressure. In this paper, we study the dynamics of a hydrated protein under moderately high pressures at low temperatures using the quasielastic neutron scattering method. We show that when applying pressure to the protein-water system, the dynamics of the protein hydration water does not slow down but becomes faster instead.
View Article and Find Full Text PDFMolecular dynamics simulations and neutron scattering experiments have shown that many hydrated globular proteins exhibit a universal dynamic transition at TD = 220 K, below which the biological activity of a protein sharply diminishes. We studied the phononlike low-energy excitations of two structurally very different proteins, lysozyme and bovine serum albumin, using inelastic x-ray scattering above and below TD. We found that the excitation energies of the high-Q phonons show a marked softening above TD.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2008
High-resolution quasielastic neutron scattering spectroscopy was used to measure H2O and D2O hydrated RNA samples. The contribution of scattering from RNA was subtracted out by taking the difference of the signals between the two samples. The measurements were made at a series of temperatures from 270 K down to 180 K.
View Article and Find Full Text PDF