Publications by authors named "Xiang-Pei Liu"

Cell wall is the first physical barrier to aluminum (Al) toxicity. Modification of cell wall properties to change its binding capacity to Al is one of the major strategies for plant Al resistance; nevertheless, how it is regulated in rice remains largely unknown. In this study, we show that exogenous application of putrescines (Put) could significantly restore the Al resistance of art1, a rice mutant lacking the central regulator Al RESISTANCE TRANSCRIPTION FACTOR 1 (ART1), and reduce its Al accumulation particularly in the cell wall of root tips.

View Article and Find Full Text PDF

Atomic Fermi gases provide an ideal platform for studying pairing and superfluid physics, using a Feshbach resonance between closed-channel molecular states and open-channel scattering states. Of particular interest is the strongly interacting regime. We show that the closed-channel fraction [Formula: see text] provides an effective probe for important many-body interacting effects, especially through its density dependence, which is absent from two-body theoretical predictions.

View Article and Find Full Text PDF

We systematically study the decay of quasi-two-dimensional vortices in an oblate strongly interacting Fermi gas over a wide interaction range and observe that, as the system temperature is lowered, the vortex lifetime increases in the Bose-Einstein condensate (BEC) regime but decreases at unitarity and in the Bardeen-Cooper-Schrieffer (BCS) regime. The observations can be qualitatively captured by a phenomenological model simply involving diffusion and two-body collisional loss, in which the vortex lifetime is mostly determined by the slower process of the two. In particular, the counterintuitive vortex decay in the BCS regime can be interpreted by considering the competition between the temperature dependence of the vortex annihilation rate and that of unpaired fermions.

View Article and Find Full Text PDF

Second sound attenuation, a distinctive dissipative hydrodynamic phenomenon in a superfluid, is crucial for understanding superfluidity and elucidating critical phenomena. Here, we report the observation of second sound attenuation in a homogeneous Fermi gas of lithium-6 atoms at unitarity by performing Bragg spectroscopy with high energy resolution in the long-wavelength limit. We successfully obtained the temperature dependence of second sound diffusivity [Formula: see text] and thermal conductivity κ.

View Article and Find Full Text PDF

Vortices play a leading role in many fascinating quantum phenomena. Here we generate a large number of vortices by thermally quenching a fermionic superfluid of ^{6}Li atoms in an oblate optical trap and study their annihilation dynamics and spatial distribution. Over a wide interaction range from the attractive to the repulsive side across the Feshbach resonance, these quasi-two-dimensional vortices are observed to follow algebraic scaling laws both in time and space, having exponents consistent with the two-dimensional universality.

View Article and Find Full Text PDF

We study the expansion behaviors of a Fermionic superfluid in a cigar-shaped optical dipole trap for the whole BEC-BCS crossover and various temperatures. At low temperature (0.06(1)T), the atom cloud undergoes an anisotropic hydrodynamic expansion over 30 ms, which behaves like oscillation in the horizontal plane.

View Article and Find Full Text PDF

We report on the realization of a high-power, ultranarrow-linewidth, and frequency-locked 532 nm laser system. The laser system consists of single-pass and intra-cavity second harmonic generation of a continuous-wave Ytterbium doped fiber laser at 1064 nm in the nonlinear crystal of periodically poled lithium niobate and lithium triborate, respectively. With 47 W infrared input, 30 W green laser is generated through the type I critical phase matching in the intracavity lithium triborate crystal.

View Article and Find Full Text PDF

Quantized vortices play an essential role in diverse superfluid phenomena. In a Bose-Fermi superfluid mixture, especially of two mass-imbalance species, such macroscopic quantum phenomena are particularly rich due to the interplay between the Bose and Fermi superfluidity. However, generating a Bose-Fermi two-species superfluid, producing coupled vortex lattices within, and further probing interspecies interaction effects remain challenging.

View Article and Find Full Text PDF