Background: Primary gastric linitis plastica (GLP) is a distinct phenotype of gastric cancer with poor survival. Comprehensive molecular profiles and putative therapeutic targets of GLP remain undetermined.
Methods: We subjected 10 tumor-normal tissue pairs to whole exome sequencing (WES) and whole transcriptome sequencing (WTS).
This study aimed to investigate the oncogenic activity of microRNA-10b by targeting CUB and sushi multiple domains protein 1 (CSMD1) in human gastric cancer (GC) and the underlying mechanisms. The expression of CSMD1 in human GC tissues was evaluated by real-time reverse transcription polymerase chain reaction (RT-PCR), immunoblotting, and immunohistochemical analysis. The expressive abundance of microRNA-10b was detected by stem-loop RT-PCR.
View Article and Find Full Text PDFEsophageal squamous cell carcinoma (ESCC) occurs at a relatively high frequency in China and is one of the most prevalent cancers in the world. Genome-wide association studies (GWAS) have identified 24 single-nucleotide polymorphisms (SNPs) that could be associated with ESCC in Chinese patients. This retrospective study aimed to validate the association between these 24 SNPs and ESCC in a Han Chinese subgroup from East China.
View Article and Find Full Text PDFAdenosylmethionine decarboxylase 1 (AMD1) is a key enzyme involved in biosynthesis of polyamines including spermidine and spermine. The potential function of AMD1 in human gastric cancers is unknown. We analyzed AMD1 expression level in 319 human gastric cancer samples together with the adjacent normal tissues.
View Article and Find Full Text PDFCancer prevention using natural micronutrition on epigenetic mechanisms primarily revolves around plant extracts. However, the role of macronutrition, including animal peptides, on epigenetic modification in cancer has been elusive. In traditional Chinese medicine, the soft-shelled turtle has a long-history of being a functional food that strengthens immunity through unknown mechanisms.
View Article and Find Full Text PDFEpithelial-to-mesenchymal transition (EMT) allows a cell with epithelial characteristics to transdifferentiate into a cell with mesenchymal characteristics, which is recognized as a key priming event for the initiation and evolvement of cancer metastasis. Accumulating data have shown that aberrant cancer metabolism contributes to the execution of EMT and cancer metastasis through multiple pathological pathways. Recently, the N-MYC downstream-regulated gene 2 (NDRG2), as a tumor suppressor and metabolism-related gene in various cancers, has been widely noted.
View Article and Find Full Text PDF