Potential health risks related to environmental endocrine disruptors (EEDs) have aroused research hotspots at the forefront of water treatment technologies. Herein, nitrogen-doped titanium dioxide/schwertmannite nanocomposites (N-TiO/SCH) have been successfully developed as heterogeneous catalysts for the degradation of typical EEDs via photo-Fenton processes. Due to the sustainable Fe(III)/Fe(II) conversion induced by photoelectrons, as-prepared N-TiO/SCH nanocomposites exhibit much enhanced efficiency for the degradation of bisphenol A (BPA; ca.
View Article and Find Full Text PDFBackground: As one of the most common complications of osteoporosis, osteoporotic vertebral compression fracture (OVCF) increases the risk of disability and mortality in elderly patients. Percutaneous vertebroplasty (PVP) is considered to be an effective, safe, and minimally invasive treatment for OVCFs. The recollapse of cemented vertebrae is one of the serious complications of PVP.
View Article and Find Full Text PDFA six-residue facial cyclopeptide was designed with the following sequence: c-[D-Leu-L-Lys-D-Ala-L-Lys-D-Leu-L-Gln] (CP). Extensive hydrogen bonding between the cyclopeptide backbones mainly regulated CP to self-assemble into single-walled nanotubes. Simultaneously, the hydrophobic interaction among facial hydrophobic side chains of CP was introduced to stabilize the hydrogen bonding, resulting in the formation of the thick-walled nanotubes with high length–diameter ratios.
View Article and Find Full Text PDFGraphene oxide (GO)-based theranostic nanohybrid is designed for tumor induced imaging and potential combinational tumor therapy. The anti-tumor drug, Doxorubicin (DOX) is chemically conjugated to the poly(ethylenimine)-co-poly(ethylene glycol) (PEI-PEG) grafted GO via a MMP2-cleavable PLGLAG peptide linkage. The therapeutic efficacy of DOX is chemically locked and its intrinsic fluorescence is quenched by GO under normal physiological condition.
View Article and Find Full Text PDFNeurodegenerative diseases including Alzheimer's, Parkinson's, and type II diabetes are recognized to be related to proteins misfolding into amyloid fibrils and other aggregates with a β-sheet conformation. Herein, self-assembled peptide micro/nanoarchitectures were designed and prepared to mimic those aggregates. A short β-amyloid peptide derivative with a diphenylalanine moiety was synthesized, which could self-assemble into nanofibers viaβ-sheet conformation in an aqueous solution with a concentration of 1 mg mL at pH about 8.
View Article and Find Full Text PDF